IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v42y2008i4p420-435.html
   My bibliography  Save this item

The First Optimized Railway Timetable in Practice

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
  2. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2012. "Delay Management with Rerouting of Passengers," Transportation Science, INFORMS, vol. 46(1), pages 74-89, February.
  3. Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
  4. Wang, Yihui & Tang, Tao & Ning, Bin & Meng, Lingyun, 2017. "Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 83-104.
  5. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
  6. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
  7. Han Zheng & Junhua Chen & Zhaocha Huang & Jianhao Zhu, 2022. "Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express," Mathematics, MDPI, vol. 10(21), pages 1-29, November.
  8. Cacchiani, Valentina & Caprara, Alberto & Toth, Paolo, 2010. "Scheduling extra freight trains on railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 215-231, February.
  9. Zhan, Shuguang & Wong, S.C. & Lo, S.M., 2020. "Social equity-based timetabling and ticket pricing for high-speed railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 165-186.
  10. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
  11. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  12. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
  13. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  14. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
  15. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
  16. Leif K Sandal & Sturla F Kvamsdal & José M Maroto & Manuel Morán, 2021. "A contraction approach to dynamic optimization problems," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
  17. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
  18. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2020. "Bioeconomic modeling of seasonal fisheries," European Journal of Operational Research, Elsevier, vol. 281(2), pages 332-340.
  19. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
  20. Mitra Heidari & Seyyed-Mahdi Hosseini-Motlagh & Nariman Nikoo, 2020. "A subway planning bi-objective multi-period optimization model integrating timetabling and vehicle scheduling: a case study of Tehran," Transportation, Springer, vol. 47(1), pages 417-443, February.
  21. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
  22. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
  23. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
  24. van Lieshout, R.N., 2019. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Econometric Institute Research Papers EI2019-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  25. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
  26. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
  27. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  28. Jingfeng Yang & Hai Wang & Jiangang Jin, 2023. "Optimization of Station-Skip in a Cyclic Express Subway Service," Networks and Spatial Economics, Springer, vol. 23(2), pages 445-468, June.
  29. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
  30. Fredrik Ljunggren & Kristian Persson & Anders Peterson & Christiane Schmidt, 2021. "Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path," Public Transport, Springer, vol. 13(3), pages 597-623, October.
  31. Rolf N. Van Lieshout, 2021. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Transportation Science, INFORMS, vol. 55(3), pages 768-790, May.
  32. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
  33. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
  34. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
  35. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
  36. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
  37. Jian Gang Jin & Kwong Meng Teo & Amedeo R. Odoni, 2016. "Optimizing Bus Bridging Services in Response to Disruptions of Urban Transit Rail Networks," Transportation Science, INFORMS, vol. 50(3), pages 790-804, August.
  38. Gonçalo P. Matos & Luís M. Albino & Ricardo L. Saldanha & Ernesto M. Morgado, 2021. "Solving periodic timetabling problems with SAT and machine learning," Public Transport, Springer, vol. 13(3), pages 625-648, October.
  39. Sihui Long & Lingyun Meng & Jianrui Miao & Xin Hong & Francesco Corman, 2020. "Synchronizing Last Trains of Urban Rail Transit System to Better Serve Passengers from Late Night Trains of High-Speed Railway Lines," Networks and Spatial Economics, Springer, vol. 20(2), pages 599-633, June.
  40. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
  41. Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  42. Van Aken, Sander & Bešinović, Nikola & Goverde, Rob M.P., 2017. "Designing alternative railway timetables under infrastructure maintenance possessions," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 224-238.
  43. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
  44. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
  45. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.
  46. Reisch, Julian, 2020. "State of the art overview on automatic railway timetable generation and optimization," Discussion Papers 2020/20, Free University Berlin, School of Business & Economics.
  47. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
  48. Nikola Bešinović & Egidio Quaglietta & Rob M. P. Goverde, 2019. "Resolving instability in railway timetabling problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 833-861, December.
  49. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
  50. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
  51. Shi Qiang Liu & Erhan Kozan, 2011. "Scheduling Trains with Priorities: A No-Wait Blocking Parallel-Machine Job-Shop Scheduling Model," Transportation Science, INFORMS, vol. 45(2), pages 175-198, May.
  52. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
  53. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
  54. Polinder, Gert-Jaap & Schmidt, Marie & Huisman, Dennis, 2021. "Timetabling for strategic passenger railway planning," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 111-135.
  55. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.