IDEAS home Printed from https://ideas.repec.org/r/hal/journl/hal-00732538.html
   My bibliography  Save this item

Realised quantile-based estimation of the integrated variance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
  2. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
  3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
  4. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
  5. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
  6. Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
  7. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
  8. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  9. repec:hal:journl:peer-00732538 is not listed on IDEAS
  10. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
  11. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
  12. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
  13. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
  14. Mancini, Cecilia, 2013. "Measuring the relevance of the microstructure noise in financial data," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2728-2751.
  15. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
  16. Riza Demirer & Konstantinos Gkillas & Christos Kountzakis & Amaryllis Mavragani, 2020. "Risk Appetite and Jumps in Realized Correlation," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
  17. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
  18. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
  19. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
  20. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
  21. Gkillas, Konstantinos & Boako, Gideon & Vortelinos, Dimitrios & Vasiliadis, Lavrentios, 2020. "Non-parametric quantile dependencies between volatility discontinuities and political risk," Finance Research Letters, Elsevier, vol. 32(C).
  22. Qi Wang & Jos'e E. Figueroa-L'opez & Todd Kuffner, 2019. "Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise," Papers 1909.04853, arXiv.org.
  23. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
  24. Álvaro Cartea & Dimitrios Karyampas, 2016. "The Relationship between the Volatility of Returns and the Number of Jumps in Financial Markets," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 929-950, June.
  25. Cecilia Mancini, 2012. "Measuring the relevance of the microstructure noise in financial data," Working Papers - Mathematical Economics 2012-09, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  26. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
  27. Harry-Paul Vander Elst & David Veredas, 2014. "Disentangled Jump-Robust Realized Covariances and Correlations with Non-Synchronous Prices," Working Papers ECARES ECARES 2014-35, ULB -- Universite Libre de Bruxelles.
  28. Vortelinos, Dimitrios I., 2016. "Incremental information of stock indicators," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 79-97.
  29. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
  30. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
  31. Christophe Boucher & Gilles de Truchis & Elena Ivona Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," Working Papers hal-04141651, HAL.
  32. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
  33. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
  34. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
  35. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
  36. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
  37. Christophe Boucher & Gilles de Truchis & Elena Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," EconomiX Working Papers 2017-20, University of Paris Nanterre, EconomiX.
  38. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Muhammad Tahir Suleman, 2020. "Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1109-1127, April.
  39. Per A. Mykland & Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Papers 2012-W02, Economics Group, Nuffield College, University of Oxford.
  40. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
  41. Linlan Xiao & Vigdis Boasson & Sergey Shishlenin & Victoria Makushina, 2018. "Volatility forecasting: combinations of realized volatility measures and forecasting models," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1428-1441, March.
  42. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
  43. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
  44. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
  45. Robert Azencott & Peng Ren & Ilya Timofeyev, 2017. "Realized volatility and parametric estimation of Heston SDEs," Papers 1706.04566, arXiv.org, revised Mar 2020.
  46. Jorge M. Uribe, 2018. "“Scaling Down Downside Risk with Inter-Quantile Semivariances”," IREA Working Papers 201826, University of Barcelona, Research Institute of Applied Economics, revised Oct 2018.
  47. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
  48. repec:cte:wsrepe:es142416 is not listed on IDEAS
  49. Frowin Schulz & Karl Mosler, 2011. "The effect of infrequent trading on detecting price jumps," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 27-58, March.
  50. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
  51. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
  52. repec:lan:wpaper:592830 is not listed on IDEAS
  53. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
  54. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
  55. repec:dau:papers:123456789/6805 is not listed on IDEAS
  56. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
  57. Kanaya, Shin & Otsu, Taisuke, 2012. "Large deviations of realized volatility," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
  58. Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
  59. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
  60. repec:hal:journl:peer-00741630 is not listed on IDEAS
  61. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.