IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v77y2015icp95-112.html
   My bibliography  Save this item

Modelling market diffusion of electric vehicles with real world driving data – German market and policy options

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
  2. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
  3. Gu, Xiaoyu & Ieromonachou, Petros & Zhou, Li, 2019. "Subsidising an electric vehicle supply chain with imperfect information," International Journal of Production Economics, Elsevier, vol. 211(C), pages 82-97.
  4. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
  5. Mo, Dong & Yu, Jingru & Chen, Xiqun Michael, 2020. "Modeling and managing heterogeneous ride-sourcing platforms with government subsidies on electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 447-472.
  6. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
  7. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
  8. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
  9. Jiali Yu & Peng Yang & Kai Zhang & Faping Wang & Lixin Miao, 2018. "Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
  10. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
  11. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
  12. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
  13. Nugroho, Rizqi Ilma & Gnann, Till & Speth, Daniel & Purwanto, Widodo Wahyu & Hanafi, Jessica & Soehodho, Sutanto, 2024. "Agent-based simulation for market diffusion of passenger cars and motorcycles BEV in Greater Jakarta Area," Working Papers "Sustainability and Innovation" S05/2024, Fraunhofer Institute for Systems and Innovation Research (ISI).
  14. Oh, Yunjung & Park, Junhong & Lee, Jong Tae & Seo, Jigu & Park, Sungwook, 2016. "Development strategies to satisfy corporate average CO2 emission regulations of light duty vehicles (LDVs) in Korea," Energy Policy, Elsevier, vol. 98(C), pages 121-132.
  15. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
  16. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
  17. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
  18. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
  19. Wang, Lei & Fu, Zhong-Lin & Guo, Wei & Liang, Ruo-Yu & Shao, Hong-Yu, 2020. "What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons," Energy Policy, Elsevier, vol. 142(C).
  20. Tobias Buchmann & Patrick Wolf & Stefan Fidaschek, 2021. "Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach," Energies, MDPI, vol. 14(3), pages 1-25, January.
  21. Farida Shaban & Pelopidas Siskos & Christos Tjortjis, 2023. "Electromobility Prospects in Greece by 2030: A Regional Perspective on Strategic Policy Analysis," Energies, MDPI, vol. 16(16), pages 1-17, August.
  22. Luo, Qi & Yin, Yunlei & Chen, Pengyu & Zhan, Zhenfei & Saigal, Romesh, 2022. "Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption," Transport Policy, Elsevier, vol. 129(C), pages 117-136.
  23. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
  24. Shao, Jing & Jiang, Changmin & Cui, Yinglong & Tang, Yao, 2023. "A game-theoretic model to compare charging infrastructure subsidy and electric vehicle subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  25. Murugan, Manivel & Marisamynathan, Sankaran, 2024. "Policy analysis for sustainable EV charging facility adoption using SEM-ANN approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
  26. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.