IDEAS home Printed from https://ideas.repec.org/r/eee/tefoso/v79y2012i6p999-1020.html
   My bibliography  Save this item

Multi-dimensional struggles in the greening of industry: A dialectic issue lifecycle model and case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ahn, Sang-Jin & Yoon, Ho Young & Lee, Young-Joo, 2021. "Text mining as a tool for real-time technology assessment: Application to the cross-national comparative study on artificial organ technology," Technology in Society, Elsevier, vol. 66(C).
  2. Schot, Johan & Kanger, Laur, 2018. "Deep transitions: Emergence, acceleration, stabilization and directionality," Research Policy, Elsevier, vol. 47(6), pages 1045-1059.
  3. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  4. Jeremy Hall & Stelvia Matos & Vernon Bachor, 2019. "From green technology development to green innovation: inducing regulatory adoption of pathogen detection technology for sustainable forestry," Small Business Economics, Springer, vol. 52(4), pages 877-889, April.
  5. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
  6. Geels, Frank W., 2014. "Reconceptualising the co-evolution of firms-in-industries and their environments: Developing an inter-disciplinary Triple Embeddedness Framework," Research Policy, Elsevier, vol. 43(2), pages 261-277.
  7. Matschoss, Kaisa & Repo, Petteri, 2020. "Forward-looking network analysis of ongoing sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
  8. Geels, F.W. & Sareen, S & Hook, A. & Sovacool, B.K., 2021. "Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000-2019)," Research Policy, Elsevier, vol. 50(7).
  9. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  10. María Elena López Reyes & Willem A. Zwagers & Ingrid J. Mulder, 2020. "Considering the Human-Dimension to Make Sustainable Transitions Actionable," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
  11. Penna, Caetano C.R. & Geels, Frank W., 2015. "Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model," Research Policy, Elsevier, vol. 44(5), pages 1029-1048.
  12. Markard, Jochen & Wirth, Steffen & Truffer, Bernhard, 2016. "Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology," Research Policy, Elsevier, vol. 45(1), pages 330-344.
  13. Sovacool, Benjamin K. & Noel, Lance & Orsato, Renato J., 2017. "Stretching, embeddedness, and scripts in a sociotechnical transition: Explaining the failure of electric mobility at Better Place (2007–2013)," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 24-34.
  14. Johan Schot & Laur Kanger, 2016. "Deep Transitions: Emergence, Acceleration, Stabilization and Directionality," SPRU Working Paper Series 2016-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
  15. Geels, Frank W. & Penna, Caetano C.R., 2015. "Societal problems and industry reorientation: Elaborating the Dialectic Issue LifeCycle (DILC) model and a case study of car safety in the USA (1900–1995)," Research Policy, Elsevier, vol. 44(1), pages 67-82.
  16. Wield, David & Tait, Joyce & Chataway, Joanna & Mittra, James & Mastroeni, Michele, 2017. "Conceptualising and practising multiple knowledge interactions in the life sciences," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 308-315.
  17. Bettini, Yvette & Brown, Rebekah R. & de Haan, Fjalar J. & Farrelly, Megan, 2015. "Understanding institutional capacity for urban water transitions," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 65-79.
  18. Frank W. Geels, 2013. "The Impact of the Financial and Economic Crisis on Sustainability Transitions: Financial Investment, Governance and Public Discourse. WWWforEurope Working Paper No. 39," WIFO Studies, WIFO, number 47014.
  19. Magda M. Smink & Marko P. Hekkert & Simona O. Negro, 2015. "Keeping sustainable innovation on a leash? Exploring incumbents’ institutional strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 24(2), pages 86-101, February.
  20. Fuenfschilling, Lea & Truffer, Bernhard, 2016. "The interplay of institutions, actors and technologies in socio-technical systems — An analysis of transformations in the Australian urban water sector," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 298-312.
  21. Jing Lu & Kathleen Rodenburg & Lianne Foti & Ann Pegoraro, 2022. "Are firms with better sustainability performance more resilient during crises?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3354-3370, November.
  22. Peter Hemmings & Michael Mulheron & Richard J. Murphy & Matt Prescott, 2021. "Investigating the Impact of COVID-19 Disruption on the Decarbonisation Agenda at Airports: Grounded or Ready for Take-Off?," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
  23. Allan Dahl Andersen & Jochen Markard, 2017. "Innovating incumbents and technological complementarities: How recent dynamics in the HVDC industry can inform transition theories," Working Papers on Innovation Studies 20170612, Centre for Technology, Innovation and Culture, University of Oslo.
  24. Rupesh Kumar & Deepak Bangwal, 2023. "An assessment of sustainable supply chain initiatives in Indian automobile industry using PPS method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9703-9729, September.
  25. Aditi Khodke & Atsushi Watabe & Nigel Mehdi, 2021. "Implementation of Accelerated Policy-Driven Sustainability Transitions: Case of Bharat Stage 4 to 6 Leapfrogs in India," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
  26. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
  27. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  28. Erik G. Hansen & Stefan Schaltegger, 2016. "The Sustainability Balanced Scorecard: A Systematic Review of Architectures," Journal of Business Ethics, Springer, vol. 133(2), pages 193-221, January.
  29. Phil Johnstone & Andy Stirling, 2015. "Comparing Nuclear Power Trajectories inGermany And the UK: From ‘Regimes’ to ‘Democracies’ in Sociotechnical Transitions and Discontinuities," SPRU Working Paper Series 2015-18, SPRU - Science Policy Research Unit, University of Sussex Business School.
  30. Philipp Späth & Harald Rohracher & Alanus Von Radecki, 2016. "Incumbent Actors as Niche Agents: The German Car Industry and the Taming of the “Stuttgart E-Mobility Region”," Sustainability, MDPI, vol. 8(3), pages 1-16, March.
  31. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
  32. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.