IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v80y2015icp454-470.html
   My bibliography  Save this item

Wave energy potential assessment in the central and southern regions of the South China Sea

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jonathan C. Pacaldo & Princess Hope T. Bilgera & Michael Lochinvar S. Abundo, 2022. "Nearshore Wave Energy Resource Assessment for Off-Grid Islands: A Case Study in Cuyo Island, Palawan, Philippines," Energies, MDPI, vol. 15(22), pages 1-29, November.
  2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
  3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
  4. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
  5. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
  6. Wang, Yize & Liu, Zhenqing, 2021. "Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter," Renewable Energy, Elsevier, vol. 179(C), pages 563-583.
  7. Sun, Ze & Zhang, Haicheng & Xu, Daolin & Liu, Xiaolong & Ding, Jun, 2020. "Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data," Energy, Elsevier, vol. 197(C).
  8. Chutipat Foyhirun & Duangrudee Kositgittiwong & Chaiwat Ekkawatpanit, 2020. "Wave Energy Potential and Simulation on the Andaman Sea Coast of Thailand," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
  9. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
  10. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
  11. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
  12. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
  13. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
  14. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
  15. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
  16. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
  17. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
  18. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
  19. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
  20. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
  21. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
  22. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
  23. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
  24. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
  25. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
  26. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.