IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v66y2014icp650-661.html
   My bibliography  Save this item

Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rui Yang & Yupeng Yuan & Rushun Ying & Boyang Shen & Teng Long, 2020. "A Novel Energy Management Strategy for a Ship’s Hybrid Solar Energy Generation System Using a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(6), pages 1-14, March.
  2. Huang, Zhijia & Lu, Yuehong & Wei, Mengmeng & Liu, Jingjing, 2017. "Performance analysis of optimal designed hybrid energy systems for grid-connected nearly/net zero energy buildings," Energy, Elsevier, vol. 141(C), pages 1795-1809.
  3. Jicheng Liu & Fangqiu Xu & Shuaishuai Lin & Hua Cai & Suli Yan, 2018. "A Multi-Agent-Based Optimization Model for Microgrid Operation Using Dynamic Guiding Chaotic Search Particle Swarm Optimization," Energies, MDPI, vol. 11(12), pages 1-22, November.
  4. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
  5. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
  6. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
  7. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
  8. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.
  9. Wang, Rui & Xiong, Jian & He, Min-fan & Gao, Liang & Wang, Ling, 2020. "Multi-objective optimal design of hybrid renewable energy system under multiple scenarios," Renewable Energy, Elsevier, vol. 151(C), pages 226-237.
  10. Ana Rodrigues & Denise Machado & Tomaz Dentinho, 2017. "Electrical Energy Storage Systems Feasibility; the Case of Terceira Island," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
  11. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
  12. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
  13. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
  14. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
  15. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Stochastic-heuristic methodology for the optimisation of components and control variables of PV-wind-diesel-battery stand-alone systems," Renewable Energy, Elsevier, vol. 99(C), pages 919-935.
  16. Mikołaj Bartłomiejczyk, 2018. "Potential Application of Solar Energy Systems for Electrified Urban Transportation Systems," Energies, MDPI, vol. 11(4), pages 1-17, April.
  17. Wang, Rui & Li, Guozheng & Ming, Mengjun & Wu, Guohua & Wang, Ling, 2017. "An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system," Energy, Elsevier, vol. 141(C), pages 2288-2299.
  18. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
  19. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
  20. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
  21. Ayop, Razman & Isa, Normazlina Mat & Tan, Chee Wei, 2018. "Components sizing of photovoltaic stand-alone system based on loss of power supply probability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2731-2743.
  22. Mohammad Shafiey Dehaj & Hassan Hajabdollahi, 2021. "Multi-objective optimization of hybrid solar/wind/diesel/battery system for different climates of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10910-10936, July.
  23. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
  24. Yuehong Lu & Mohammed Alghassab & Manuel S. Alvarez-Alvarado & Hasan Gunduz & Zafar A. Khan & Muhammad Imran, 2020. "Optimal Distribution of Renewable Energy Systems Considering Aging and Long-Term Weather Effect in Net-Zero Energy Building Design," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
  25. Sadeghi, Delnia & Hesami Naghshbandy, Ali & Bahramara, Salah, 2020. "Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization," Energy, Elsevier, vol. 209(C).
  26. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
  27. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
  28. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
  29. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
  30. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
  31. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
  32. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
  33. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
  34. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
  35. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
  36. Kumar Shivam & Jong-Chyuan Tzou & Shang-Chen Wu, 2020. "Multi-Objective Sizing Optimization of a Grid-Connected Solar–Wind Hybrid System Using Climate Classification: A Case Study of Four Locations in Southern Taiwan," Energies, MDPI, vol. 13(10), pages 1-30, May.
  37. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
  38. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
  39. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
  40. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.