IDEAS home Printed from https://ideas.repec.org/r/eee/gamebe/v2y1990i1p1-12.html
   My bibliography  Save this item

The complexity of computing a best response automaton in repeated games with mixed strategies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. repec:dau:papers:123456789/6127 is not listed on IDEAS
  2. Ballester, Coralio, 2004. "NP-completeness in hedonic games," Games and Economic Behavior, Elsevier, vol. 49(1), pages 1-30, October.
  3. Stephan Schosser & Bodo Vogt, 2015. "What automaton model captures decision making? A call for finding a behavioral taxonomy of complexity," FEMM Working Papers 150010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  4. Itzhak Gilboa & Ehud Kalai & Eitan Zemel, 1989. "The Complexity of Eliminating Dominated Strategies," Discussion Papers 853, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  5. D. Sgroi & D. J. Zizzo, 2002. "Strategy Learning in 3x3 Games by Neural Networks," Cambridge Working Papers in Economics 0207, Faculty of Economics, University of Cambridge.
  6. Lehrer, Ehud & Solan, Eilon, 2009. "Approachability with bounded memory," Games and Economic Behavior, Elsevier, vol. 66(2), pages 995-1004, July.
  7. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
  8. Daniel John Zizzo & Daniel Sgroi, 2001. "Bounded-Rational Behavior by Neural Networks in Normal Form Games," Economics Series Working Papers 2000-W30, University of Oxford, Department of Economics.
  9. Oliver Compte & Andrew Postlewaite, 2010. "Plausible Cooperation, Fourth Version," PIER Working Paper Archive 15-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 23 Jan 2015.
  10. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.
  11. Ehud Lehrer & Eilon Solan, 2003. "No-Regret with Bounded Computational Capacity," Discussion Papers 1373, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  12. Jakub Dargaj & Jakob Grue Simonsen, 2020. "A Complete Characterization of Infinitely Repeated Two-Player Games having Computable Strategies with no Computable Best Response under Limit-of-Means Payoff," Papers 2005.13921, arXiv.org, revised Jun 2020.
  13. Oliveira, Fernando S., 2010. "Limitations of learning in automata-based systems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 684-691, June.
  14. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
  15. Holm, Hakan J., 1995. "Computational cost of verifying enforceable contracts," International Review of Law and Economics, Elsevier, vol. 15(2), pages 127-140, June.
  16. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
  17. Olivier Compte & Andrew Postlewaite, 2007. "Effecting Cooperation," PIER Working Paper Archive 09-019, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 29 May 2009.
  18. Dargaj, Jakub & Simonsen, Jakob Grue, 2023. "A complete characterization of infinitely repeated two-player games having computable strategies with no computable best response under limit-of-means payoff," Journal of Economic Theory, Elsevier, vol. 213(C).
  19. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
  20. Sgroi, Daniel & Zizzo, Daniel John, 2009. "Learning to play 3×3 games: Neural networks as bounded-rational players," Journal of Economic Behavior & Organization, Elsevier, vol. 69(1), pages 27-38, January.
  21. Christos Ioannou, 2014. "Coevolution of finite automata with errors," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 541-571, July.
  22. João E. Gata, 2019. "Controlling Algorithmic Collusion: short review of the literature, undecidability, and alternative approaches," Working Papers REM 2019/77, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  23. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
  24. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  25. repec:dau:papers:123456789/6381 is not listed on IDEAS
  26. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
  27. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.