IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v64y2014icp375-388.html
   My bibliography  Save this item

Modelling and operation optimization of an integrated energy based direct district water-heating system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
  2. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
  3. Suyang Zhou & Di He & Zhiyang Zhang & Zhi Wu & Wei Gu & Junjie Li & Zhe Li & Gaoxiang Wu, 2019. "A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
  4. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  5. Zhang, Zhaoyan & Wang, Peiguang & Jiang, Ping & Liu, Zhiheng & Fu, Lei, 2022. "Energy management of ultra-short-term optimal scheduling of integrated energy system considering the characteristics of heating network," Energy, Elsevier, vol. 240(C).
  6. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
  7. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
  8. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
  9. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
  10. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
  11. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Miao, Qingwei, 2017. "Hydraulic performance optimization of meshed district heating network with multiple heat sources," Energy, Elsevier, vol. 126(C), pages 603-621.
  12. Hohmann, Marc & Warrington, Joseph & Lygeros, John, 2020. "A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 16-32.
  13. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
  14. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
  15. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
  16. Sameti, Mohammad & Haghighat, Fariborz, 2019. "Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power," Renewable Energy, Elsevier, vol. 130(C), pages 371-387.
  17. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
  18. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
  19. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
  20. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
  21. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
  22. Sang Hwa Song & Taesu Cheong, 2018. "Pattern-Based Set Partitioning Algorithm for the Integrated Sustainable Operation of a District Heating Network," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
  23. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
  24. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
  25. Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
  26. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
  27. Wei, F. & Wu, Q.H. & Jing, Z.X. & Chen, J.J. & Zhou, X.X., 2016. "Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach," Energy, Elsevier, vol. 111(C), pages 933-946.
  28. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
  29. He, Ke-Lun & Chen, Qun & Ma, Huan & Zhao, Tian & Hao, Jun-Hong, 2020. "An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint," Energy, Elsevier, vol. 211(C).
  30. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
  31. Chengyu Zeng & Yuechun Jiang & Yuqing Liu & Zuoyun Tan & Zhongnan He & Shuhong Wu, 2019. "Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance," Energies, MDPI, vol. 12(16), pages 1-17, August.
  32. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
  33. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
  34. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
  35. Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
  36. Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
  37. Li, Peng & Li, Shuang & Yu, Hao & Yan, Jinyue & Ji, Haoran & Wu, Jianzhong & Wang, Chengshan, 2022. "Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics," Applied Energy, Elsevier, vol. 307(C).
  38. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  39. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
  40. Zhang, Xuemei & Yuan, Jianjuan & Kong, Xiangfei & Han, Jingxiao & Shi, Ying, 2023. "Coupling of flexible phase change materials and pipe for improving the stability of heating system," Energy, Elsevier, vol. 275(C).
  41. N. N. Novitsky & A. V. Lutsenko, 2016. "Discrete-continuous optimization of heat network operating conditions in parallel operation of similar pumps at pumping stations," Journal of Global Optimization, Springer, vol. 66(1), pages 83-94, September.
  42. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
  43. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
  44. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
  45. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
  46. Ping Li & Haixia Wang & Quan Lv & Weidong Li, 2017. "Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration," Energies, MDPI, vol. 10(7), pages 1-19, June.
  47. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  48. Wang, Wei & Jing, Sitong & Sun, Yang & Liu, Jizhen & Niu, Yuguang & Zeng, Deliang & Cui, Can, 2019. "Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation," Energy, Elsevier, vol. 169(C), pages 988-999.
  49. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
  50. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.