IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v42y2012i1p241-250.html
   My bibliography  Save this item

Modeling and optimization of HVAC systems using a dynamic neural network

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
  2. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
  3. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
  4. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
  5. Zhao, Lei & Cai, Wenjian & Ding, Xudong & Chang, Weichung, 2013. "Model-based optimization for vapor compression refrigeration cycle," Energy, Elsevier, vol. 55(C), pages 392-402.
  6. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
  7. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
  8. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Zhao, Lei, 2015. "Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm," Energy, Elsevier, vol. 82(C), pages 939-948.
  9. Guiqiang Wang & Haiman Wang & Zhiqiang Kang & Guohui Feng, 2020. "Data-Driven Optimization for Capacity Control of Multiple Ground Source Heat Pump System in Heating Mode," Energies, MDPI, vol. 13(14), pages 1-15, July.
  10. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
  11. Masoud Nazari & Ali Ghaffari, 2016. "Modeling and Analysis of Cooling Coil for Control System Design Using Gray Box Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 1-23, October.
  12. Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
  13. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
  14. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  15. Touš, Michal & Pavlas, Martin & Putna, Ondřej & Stehlík, Petr & Crha, Lukáš, 2015. "Combined heat and power production planning in a waste-to-energy plant on a short-term basis," Energy, Elsevier, vol. 90(P1), pages 137-147.
  16. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
  17. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
  18. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
  19. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
  20. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
  21. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).
  22. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2012. "Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors," Energy, Elsevier, vol. 46(1), pages 629-635.
  23. Seyyed Danial Nazemi & Esmat Zaidan & Mohsen A. Jafari, 2021. "The Impact of Occupancy-Driven Models on Cooling Systems in Commercial Buildings," Energies, MDPI, vol. 14(6), pages 1-20, March.
  24. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
  25. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
  26. Mario Collotta & Antonio Messineo & Giuseppina Nicolosi & Giovanni Pau, 2014. "A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input," Energies, MDPI, vol. 7(8), pages 1-30, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.