IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v82y2015icp156-165.html
   My bibliography  Save this item

The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. John Colton & Kenneth Corscadden & Stewart Fast & Monica Gattinger & Joel Gehman & Martha Hall Findlay & Dylan Morgan & Judith Sayers & Jennifer Winter & Adonis Yatchew, 2016. "Energy Projects, Social Licence, Public Acceptance and Regulatory Systems in Canada: A White Paper," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 9(20), May.
  2. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
  3. Nordensvard, Johan & Zhou, Yuan & Zhang, Xiao, 2018. "Innovation core, innovation semi-periphery and technology transfer: The case of wind energy patents," Energy Policy, Elsevier, vol. 120(C), pages 213-227.
  4. Weiss, Günther, 2017. "Medial construction of energy landscapes in Germany," Energy Policy, Elsevier, vol. 109(C), pages 845-853.
  5. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  6. Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
  7. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
  8. Mengelkamp, Esther & Schönland, Thomas & Huber, Julian & Weinhardt, Christof, 2019. "The value of local electricity - A choice experiment among German residential customers," Energy Policy, Elsevier, vol. 130(C), pages 294-303.
  9. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
  10. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
  11. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
  12. Wei-Ming Chen & Hana Kim, 2019. "Circular economy and energy transition: A nexus focusing on the non-energy use of fuels," Energy & Environment, , vol. 30(4), pages 586-600, June.
  13. Erik Gawel & Sebastian Strunz & Paul Lehmann, 2016. "Support policies for renewables Instrument choice and instrument change from a Public Choice perspective," WIDER Working Paper Series 006, World Institute for Development Economic Research (UNU-WIDER).
  14. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
  15. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
  16. Jin, Wei & Zhang, ZhongXiang, 2015. "Levelling the Playing Field: On the Missing Role of Network Externality in Designing Renewable Energy Technology Deployment Policies," Climate Change and Sustainable Development 208433, Fondazione Eni Enrico Mattei (FEEM).
  17. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
  18. Stewart, Fraser, 2021. "All for sun, sun for all: Can community energy help to overcome socioeconomic inequalities in low-carbon technology subsidies?," Energy Policy, Elsevier, vol. 157(C).
  19. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
  20. Erik Gawel & Sebastian Strunz & Paul Lehmann, 2016. "Support policies for renewables: Instrument choice and instrument change from a Public Choice perspective," WIDER Working Paper Series wp-2016-6, World Institute for Development Economic Research (UNU-WIDER).
  21. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
  22. Frauke Urban & Giuseppina Siciliano & Linda Wallbott & Markus Lederer & Anh Dang Nguyen, 2018. "Green transformations in Vietnam's energy sector," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 5(3), pages 558-582, September.
  23. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
  24. Tabatabaei, Sharareh Majdzadeh & Hadian, Ebrahim & Marzban, Hossein & Zibaei, Mansour, 2017. "Economic, welfare and environmental impact of feed-in tariff policy: A case study in Iran," Energy Policy, Elsevier, vol. 102(C), pages 164-169.
  25. Kejia Yang & Kaidong Feng, 2024. "Going beyond catch up: two governance models of China’s low-carbon energy transitions," Working Papers on Innovation Studies 20240108, Centre for Technology, Innovation and Culture, University of Oslo.
  26. Yang, Ju-Ying & Dodge, Jennifer, 2024. "Local energy transitions as process: How contract management problems stymie a city's sustainable transition to renewable energy," Energy Policy, Elsevier, vol. 184(C).
  27. Qi, Xiaoyan & Guo, Yanshan & Guo, Pibin & Yao, Xilong & Liu, Xiuli, 2022. "Do subsidies and R&D investment boost energy transition performance? Evidence from Chinese renewable energy firms," Energy Policy, Elsevier, vol. 164(C).
  28. Kiunke, Theresa & Gemignani, Natalia & Malheiro, Pedro & Brudermann, Thomas, 2022. "Key factors influencing onshore wind energy development: A case study from the German North Sea region," Energy Policy, Elsevier, vol. 165(C).
  29. Acuna, Jorge A. & Cantarino, Daniela & Martinez, Rodrigo & Zayas-Castro, José L., 2024. "A two-stage stochastic game model for elective surgical capacity planning and investment," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.