IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v67y2014icp648-655.html
   My bibliography  Save this item

Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
  2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
  3. Beaudreau, Bernard C. & Lightfoot, H. Douglas, 2015. "The physical limits to economic growth by R&D funded innovation," Energy, Elsevier, vol. 84(C), pages 45-52.
  4. Wen, Shibin & Liu, Hongman, 2022. "Research on energy conservation and carbon emission reduction effects and mechanism: Quasi-experimental evidence from China," Energy Policy, Elsevier, vol. 169(C).
  5. Pan, Xiongfeng & Xu, Haitao & Feng, Shenghan, 2022. "The economic and environment impacts of energy intensity target constraint: Evidence from low carbon pilot cities in China," Energy, Elsevier, vol. 261(PA).
  6. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
  7. Nicolas Schneider & Avik Sinha, 2023. "Better clean or efficient? Panel regressions," Climatic Change, Springer, vol. 176(8), pages 1-24, August.
  8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  9. Li, Ke & Lin, Boqiang, 2015. "The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors," Energy, Elsevier, vol. 86(C), pages 403-413.
  10. Kun Lv & Shurong Yu & Dian Fu & Jingwen Wang & Chencheng Wang & Junbai Pan, 2022. "The Impact of Financial Development and Green Finance on Regional Energy Intensity: New Evidence from 30 Chinese Provinces," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
  11. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
  12. Nielsen, Hana & Warde, Paul & Kander, Astrid, 2018. "East versus West: Energy intensity in coal-rich Europe, 1800–2000," Energy Policy, Elsevier, vol. 122(C), pages 75-83.
  13. Patrick Gasser & Marco Cinelli & Anna Labijak & Matteo Spada & Peter Burgherr & Miłosz Kadziński & Božidar Stojadinović, 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis," Energies, MDPI, vol. 13(7), pages 1-35, March.
  14. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
  15. Paola Garrone & Luca Grilli & Boris Mrkajic, 2018. "The role of institutional pressures in the introduction of energy‐efficiency innovations," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1245-1257, December.
  16. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
  17. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
  18. Ruyin Long & Qin Zhang & Hong Chen & Meifen Wu & Qianwen Li, 2020. "Measurement of the Energy Intensity of Human Well-Being and Spatial Econometric Analysis of Its Influencing Factors," IJERPH, MDPI, vol. 17(1), pages 1-21, January.
  19. Ching-Ren Chiu & Ming-Chung Chang & Jin-Li Hu, 2022. "Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries," Journal of Productivity Analysis, Springer, vol. 57(3), pages 297-311, June.
  20. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
  21. Ruslan Kostyrko & Tetiana Kosova & Lidiia Kostyrko & Liudmyla Zaitseva & Oleksandr Melnychenko, 2021. "Ukrainian Market of Electrical Energy: Reforming, Financing, Innovative Investment, Efficiency Analysis, and Audit," Energies, MDPI, vol. 14(16), pages 1-17, August.
  22. Sanz-Díaz, María Teresa & Velasco-Morente, Francisco & Yñiguez, Rocío & Díaz-Calleja, Emilio, 2017. "An analysis of Spain's global and environmental efficiency from a European Union perspective," Energy Policy, Elsevier, vol. 104(C), pages 183-193.
  23. António Mateus & Luís Martins, 2021. "Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 239-261, July.
  24. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
  25. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "The Impact of Economic Growth and Air Pollution on Public Health in 31 Chinese Cities," IJERPH, MDPI, vol. 16(3), pages 1-26, January.
  26. Li, Ke & Lin, Boqiang, 2015. "The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model," Energy, Elsevier, vol. 84(C), pages 589-599.
  27. Li, Li & Wang, Jianjun & Tan, Zhongfu & Ge, Xinquan & Zhang, Jian & Yun, Xiaozhe, 2014. "Policies for eliminating low-efficiency production capacities and improving energy efficiency of energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 312-326.
  28. Ying Li & Yung-ho Chiu & Liang Chun Lu, 2019. "New Energy Development and Pollution Emissions in China," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
  29. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.