IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v32y2004i12p1437-1450.html
   My bibliography  Save this item

Policies for advancing energy efficiency and renewable energy use in Brazil

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jairo da Costa Junior & Jan Carel Diehl & Fernando Secomandi, 2019. "Towards Systems-Oriented Energy Solutions: A Multilevel Analysis of a Low-Income Energy Efficiency Program in Brazil," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
  2. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
  3. Leusin, Matheus Eduardo & Uriona Maldonado, Mauricio & Herrera, Milton M., 2024. "Exploring the influence of Brazilian project cancellation mechanisms on new wind power generation," Renewable Energy, Elsevier, vol. 221(C).
  4. Silvestre, Bruno & Hall, Jeremy & Matos, Stelvia & Figueira, Luiz Augusto, 2010. "Privatization of electricity distribution in the Northeast of Brazil: The good, the bad, the ugly or the naïve?," Energy Policy, Elsevier, vol. 38(11), pages 7001-7013, November.
  5. Eduardo Polloni-Silva & Guilherme Augusto Roiz & Enzo Barberio Mariano & Herick Fernando Moralles & Daisy Aparecida Nascimento Rebelatto, 2022. "The Environmental Cost of Attracting FDI: An Empirical Investigation in Brazil," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
  6. Apfel, Dorothee & Haag, Steffen & Herbes, Carsten, 2021. "Research agendas on renewable energies in the Global South: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  7. Sun, Shufen & Huang, Chenchen, 2021. "Energy structure evaluation and optimization in BRICS: A dynamic analysis based on a slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 216(C).
  8. Ayoub, Nasser & Yuji, Naka, 2012. "Governmental intervention approaches to promote renewable energies—Special emphasis on Japanese feed-in tariff," Energy Policy, Elsevier, vol. 43(C), pages 191-201.
  9. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
  10. Maulud, A.L. & Saidi, H., 2012. "The Malaysian Fifth Fuel Policy: Re-strategising the Malaysian Renewable Energy Initiatives," Energy Policy, Elsevier, vol. 48(C), pages 88-92.
  11. Lan-yue, Zhang & Yao, Li & Jing, Zhang & Bing, Luo & Ji-min, He & Shi-huai, Deng & Xin, Huang & ling, Luo & Fei, Shen & Hong, Xiao & Yan-zong, Zhang & Yuan-wei, Li & Li-lin, Wang & Xue-Ping, Yao & Ya-, 2017. "The relationships among energy consumption, economic output and energy intensity of countries at different stage of development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 258-264.
  12. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
  13. Washburn, C. & Pablo-Romero, M., 2019. "Measures to promote renewable energies for electricity generation in Latin American countries," Energy Policy, Elsevier, vol. 128(C), pages 212-222.
  14. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
  15. repec:ilo:ilowps:457681 is not listed on IDEAS
  16. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
  17. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
  18. Sunil Ashra, 2010. "Pollution Externalities and Government Policy," Journal of Infrastructure Development, India Development Foundation, vol. 2(1), pages 15-49, June.
  19. Henriques Jr., Mauricio F. & Dantas, Fabrício & Schaeffer, Roberto, 2010. "Potential for reduction of CO2 emissions and a low-carbon scenario for the Brazilian industrial sector," Energy Policy, Elsevier, vol. 38(4), pages 1946-1961, April.
  20. Zhong Wang & Mingyu Wu & Shixiang Li & Changji Wang, 2021. "The Effect Evaluation of China’s Energy-Consuming Right Trading Policy: Empirical Analysis Based on PSM-DID," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
  21. Pansera, Mario, 2012. "Renewable energy for rural areas of Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6694-6704.
  22. Oh, Si-Doek & Lee, Yeji & Yoo, Yungpil & Kim, Jinoh & Kim, Suyong & Song, Seung Jin & Kwak, Ho-Young, 2013. "A support strategy for the promotion of photovoltaic uses for residential houses in Korea," Energy Policy, Elsevier, vol. 53(C), pages 248-256.
  23. Bodach, Susanne & Hamhaber, J., 2010. "Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil," Energy Policy, Elsevier, vol. 38(12), pages 7898-7910, December.
  24. Shangguan, Yiwen & Feng, Qiyangfan, 2024. "Environmental bonuses of employment protection: Evidence from labor contract law in China," Energy Economics, Elsevier, vol. 129(C).
  25. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
  26. Yan Wang & Dong Yang, 2018. "Impacts of Freight Transport on PM 2.5 Concentrations in China: A Spatial Dynamic Panel Analysis," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
  27. Diógenes, Jamil Ramsi Farkat & Claro, João & Rodrigues, José Coelho, 2019. "Barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 128(C), pages 253-266.
  28. Bastin, Cristina & Szklo, Alexandre & Rosa, Luiz Pinguelli, 2010. "Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet," Energy Policy, Elsevier, vol. 38(7), pages 3586-3597, July.
  29. Grisi, Edson F. & Yusta, Jose M. & Dufo-López, Rodolfo, 2012. "Opportunity costs for bioelectricity sales in Brazilian sucro-energetic industries," Applied Energy, Elsevier, vol. 92(C), pages 860-867.
  30. Samuel De Alencar Bezerra & Francisco Jackson dos Santos & Plácido Rogerio Pinheiro & Fábio Rocha Barbosa, 2017. "Dynamic Evaluation of the Energy Efficiency of Environments in Brazilian University Classrooms Using DEA," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
  31. Sk Noim Uddin & Ros Taplin & Xiaojiang Yu, 2006. "Advancement of renewables in Bangladesh and Thailand: Policy intervention and institutional settings," Natural Resources Forum, Blackwell Publishing, vol. 30(3), pages 177-187, August.
  32. Zhang, Huiming & Li, Lianshui & Cao, Jie & Zhao, Mengnan & Wu, Qing, 2011. "Comparison of renewable energy policy evolution among the BRICs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4904-4909.
  33. Coelho, Suani Teixeira & Sanches-Pereira, Alessandro & Tudeschini, Luís Gustavo & Goldemberg, José, 2018. "The energy transition history of fuelwood replacement for liquefied petroleum gas in Brazilian households from 1920 to 2016," Energy Policy, Elsevier, vol. 123(C), pages 41-52.
  34. Kievani, Ramin. & Tah, Joseph H.M. & Kurul, Esra. & Habanda, Henry., 2010. "Green jobs creation through sustainable refurbishment in the developing countries," ILO Working Papers 994576813402676, International Labour Organization.
  35. Augustus De Melo, Conrado & De Martino Jannuzzi, Gilberto & De Mello Santana, Paulo Henrique, 2018. "Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1166-1174.
  36. Roberto Schaeffer & Alexandre Salem Szklo & Fernando Monteiro Cima & Giovani Machado, 2005. "Indicators for sustainable energy development: Brazil's case study," Natural Resources Forum, Blackwell Publishing, vol. 29(4), pages 284-297, November.
  37. Farkat Diógenes, Jamil Ramsi & Coelho Rodrigues, José & Farkat Diógenes, Maria Caroline & Claro, João, 2020. "Overcoming barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 138(C).
  38. Calili, Rodrigo F. & Souza, Reinaldo C. & Galli, Alain & Armstrong, Margaret & Marcato, André Luis M., 2014. "Estimating the cost savings and avoided CO2 emissions in Brazil by implementing energy efficient policies," Energy Policy, Elsevier, vol. 67(C), pages 4-15.
  39. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
  40. Alves, Laura Araujo & Uturbey, Wadaed, 2010. "Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix," Energy Policy, Elsevier, vol. 38(10), pages 6204-6214, October.
  41. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
  42. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.