IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v27y1999i15p943-946.html
   My bibliography  Save this item

Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 4, pages 17-37.
  2. Feng Dong & Ruyin Long & Hong Chen & Xiaohui Li & Qingliang Yang, 2013. "Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
  3. Xintao Li & Dong Feng & Jian Li & Zaisheng Zhang, 2019. "Research on the Spatial Network Characteristics and Synergetic Abatement Effect of the Carbon Emissions in Beijing–Tianjin–Hebei Urban Agglomeration," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
  4. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2018. "The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model," Resources Policy, Elsevier, vol. 58(C), pages 268-276.
  5. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
  6. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
  7. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
  8. Arazmuradov, Annageldy, 2011. "Energy consumption and carbon dioxide environmental efficiency for former Soviet Union economies. evidence from DEA window analysis," MPRA Paper 36903, University Library of Munich, Germany, revised 24 Feb 2012.
  9. Gangopadhyay, Partha & Shankar, Sriram, 2016. "Energy efficiency in the ACI (ASEAN-China-India) countries: is there room for regional policy coordination?," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 6(2), pages 121-135.
  10. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
  11. Belén del-Río & Ana Fernández-Sainz & Itziar Martinez de Alegria, 2022. "Assessing the energy trilemma through the diversity of the energy mix: the case of India," SN Business & Economics, Springer, vol. 2(9), pages 1-26, September.
  12. Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
  13. Gao, Shuaizhi & Zhou, Peng & Zhang, Hongyan, 2023. "Does energy transition help narrow the urban-rural income gap? Evidence from China," Energy Policy, Elsevier, vol. 182(C).
  14. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
  15. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
  16. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
  17. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
  18. Lu Liu & Yuxin Meng & Qiying Ran, 2023. "The Impact and Mechanism of the Digital Economy on Carbon Emission Efficiency: A Perspective Based on Provincial Panel Data in China," Sustainability, MDPI, vol. 15(19), pages 1-15, September.
  19. Juan Antonio Duro Moreno & Emilio Padilla Rosa, "undated". "Análisis De Los Factores Determinantes De Las Desigualdades Internacionales En Las Emisiones De Co2 Per Cápita Aplicando El Enfoque Distributivo: Una Metodología De Descomposición Por Factores De Kaya," Working Papers 25-05 Classification-JEL , Instituto de Estudios Fiscales.
  20. Alex R. Hoen & Machiel Mulder, 2003. "A decomposition analysis of the emission of CO2," ERSA conference papers ersa03p151, European Regional Science Association.
  21. repec:dau:papers:123456789/6801 is not listed on IDEAS
  22. Baek, Chulwoo & Jung, Euy-Young & Lee, Jeong-Dong, 2014. "Effects of regulation and economic environment on the electricity industry׳s competitiveness: A study based on OECD countries," Energy Policy, Elsevier, vol. 72(C), pages 120-128.
  23. Duro, Juan Antonio, 2012. "On the automatic application of inequality indexes in the analysis of the international distribution of environmental indicators," Ecological Economics, Elsevier, vol. 76(C), pages 1-7.
  24. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
  25. Li, Man, 2010. "Decomposing the change of CO2 emissions in China: A distance function approach," Ecological Economics, Elsevier, vol. 70(1), pages 77-85, November.
  26. Feng Dong & Ruyin Long & Zhengfu Bian & Xihui Xu & Bolin Yu & Ying Wang, 2017. "Applying a Ruggiero three-stage super-efficiency DEA model to gauge regional carbon emission efficiency: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1453-1468, July.
  27. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
  28. Emilio Padilla Rosa & Jordi Roca Jusmet, 2003. "Las propuestas para un impuesto europeo sobre el CO2 y sus potenciales implicaciones distributivas entre países," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 2, pages 5-24.
  29. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
  30. Duro, Juan Antonio & Padilla, Emilio, 2006. "International inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors," Energy Economics, Elsevier, vol. 28(2), pages 170-187, March.
  31. Alex Hoen & Machiel Mulder, 2003. "Explaining Dutch emissions of CO2; a decomposition analysis," CPB Discussion Paper 24, CPB Netherlands Bureau for Economic Policy Analysis.
  32. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
  33. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
  34. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
  35. Li, Ge & Wen, Huwei, 2023. "The low-carbon effect of pursuing the honor of civilization? A quasi-experiment in Chinese cities," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 343-357.
  36. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
  37. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
  38. Ang, B. W. & Choi, Ki-Hong, 2002. "Boundary problem in carbon emission decomposition," Energy Policy, Elsevier, vol. 30(13), pages 1201-1205, October.
  39. Jingdong Zhong, 2019. "Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
  40. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
  41. Emilio Padilla Rosa & Jordi Roca Jusmet, 2002. "Las propuestas para un impuesto europeo sobre el CO2 y sus potenciales distributivas entre países," Working Papers wp0201cast, Department of Applied Economics at Universitat Autonoma of Barcelona.
  42. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
  43. Choi, Ki-Hong & Ang, B. W., 2001. "A time-series analysis of energy-related carbon emissions in Korea," Energy Policy, Elsevier, vol. 29(13), pages 1155-1161, November.
  44. Emilio Padilla & Jordi Roca, 2004. "The Proposals for a European Tax on CO 2 and Their Implications for Intercountry Distribution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(3), pages 273-295, March.
  45. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
  46. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
  47. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
  48. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
  49. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
  50. Meng, Lei & Guo, Ju'e & Chai, Jian & Zhang, Zengkai, 2011. "China's regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies," Energy Policy, Elsevier, vol. 39(10), pages 6136-6144, October.
  51. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
  52. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
  53. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
  54. Ying Sun & Fengqin Liu & Huaping Sun, 2022. "Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China," Energies, MDPI, vol. 15(6), pages 1-17, March.
  55. Roca, Jordi & Alcantara, Vicent, 2001. "Energy intensity, CO2 emissions and the environmental Kuznets curve. The Spanish case," Energy Policy, Elsevier, vol. 29(7), pages 553-556, June.
  56. Chenxu Liu & Ruien Tang & Yaqi Guo & Yuhan Sun & Xinyi Liu, 2022. "Research on the Structure of Carbon Emission Efficiency and Influencing Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
  57. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
  58. Rida Waheed & Suleman Sarwar & Zouheir Mighri, 2021. "Role of high technology exports for energy efficiency: Empirical evidence in the context of Gulf Cooperation Council countries," Energy & Environment, , vol. 32(5), pages 803-819, August.
  59. Qizhen Wang & Qian Zhang, 2022. "Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
  60. Xiaoming Jiang & Chuiyong Zheng & Chao Liu & Wenjian Zhang, 2020. "Coupling between Carbon Efficiency and Technology Absorptive Capacity—A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
  61. Zhang, Xing-Ping & Tan, Ya-Kun & Tan, Qin-Liang & Yuan, Jia-Hai, 2012. "Decomposition of aggregate CO2 emissions within a joint production framework," Energy Economics, Elsevier, vol. 34(4), pages 1088-1097.
  62. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
  63. Yingbin Zhou & Siqi Lv & Jianlin Wang & Junbo Tong & Zhong Fang, 2022. "The Impact of Green Taxes on the Carbon Emission Efficiency of China’s Construction Industry," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
  64. Jingwen Yi & Yuchen Zhang & Kaicheng Liao, 2021. "Regional Differential Decomposition and Formation Mechanism of Dynamic Carbon Emission Efficiency of China’s Logistics Industry," IJERPH, MDPI, vol. 18(24), pages 1-25, December.
  65. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
  66. Jin Zhu & Huaping Sun & Dequn Zhou & Lin Peng & Chuanwang Sun, 2020. "Carbon emission efficiency of thermal power in different regions of China and spatial correlations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1221-1242, October.
  67. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
  68. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
  69. Alex Hoen & Machiel Mulder, 2003. "Explaining Dutch emissions of CO2; a decomposition analysis," CPB Discussion Paper 24.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
  70. Jiao Wang & Zhenliang Liao & Hui Sun, 2023. "Analysis of Carbon Emission Efficiency in the Yellow River Basin in China: Spatiotemporal Differences and Influencing Factors," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  71. Peroni, Chiara, 2012. "Environmental efficiency indices: towards a new approach to green-growth accounting," MPRA Paper 38671, University Library of Munich, Germany, revised 27 Apr 2012.
  72. Emilio Padilla & Jordi Roca, 2002. "The proposals for a European tax on CO2 and their implications for intercountry," Working Papers wp0201, Department of Applied Economics at Universitat Autonoma of Barcelona.
  73. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
  74. Lior Gallo, 2023. "Electricity Intensity Convergence in the OECD Countries," Bank of Israel Working Papers 2023.10, Bank of Israel.
  75. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.