My bibliography
Save this item
Forecasting oil prices: High-frequency financial data are indeed useful
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022.
"Forecasting realized volatility of agricultural commodities,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- Rubaszek, Michał, 2021.
"Forecasting crude oil prices with DSGE models,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
- Michał Rubaszek, 2019. "Forecasting crude oil prices with DSGE models," GRU Working Paper Series GRU_2019_024, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
- Nicholas Apergis, 2023. "Forecasting energy prices: Quantile‐based risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 17-33, January.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
- Alain Hecq & Elisa Voisin, 2023.
"Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models,"
Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233,
Emerald Group Publishing Limited.
- Alain Hecq & Elisa Voisin, 2019. "Predicting crashes in oil prices during the COVID-19 pandemic with mixed causal-noncausal models," Papers 1911.10916, arXiv.org, revised May 2022.
- Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Zhang, Yue-Jun & Li, Zhao-Chen, 2021. "Forecasting the stock returns of Chinese oil companies: Can investor attention help?," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 531-555.
- Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
- Alqahtani, Abdullah & Klein, Tony & Khalid, Ali, 2019. "The impact of oil price uncertainty on GCC stock markets," Resources Policy, Elsevier, vol. 64(C).
- Krüger, Jens & Ruths Sion, Sebastian, 2019. "Improving oil price forecasts by sparse VAR methods," Darmstadt Discussion Papers in Economics 237, Darmstadt University of Technology, Department of Law and Economics.
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Wen, Danyan & Wang, Yudong & Zhang, Yaojie, 2021. "Intraday return predictability in China’s crude oil futures market: New evidence from a unique trading mechanism," Economic Modelling, Elsevier, vol. 96(C), pages 209-219.
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2021. "Forecasting oil price volatility using spillover effects from uncertainty indices," Finance Research Letters, Elsevier, vol. 42(C).
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2019. "Can spillover effects provide forecasting gains? The case of oil price volatility," MPRA Paper 96266, University Library of Munich, Germany.
- Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Degiannakis, Stavros & Filis, George, 2023.
"Oil price assumptions for macroeconomic policy,"
Energy Economics, Elsevier, vol. 117(C).
- Degiannakis, Stavros & Filis, George, 2020. "Oil price assumptions for macroeconomic policy," MPRA Paper 100705, University Library of Munich, Germany.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2021. "Financial stress, economic policy uncertainty, and oil price uncertainty," Energy Economics, Elsevier, vol. 104(C).
- Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Degiannakis, Stavros & Filis, George, 2022.
"Oil price volatility forecasts: What do investors need to know?,"
Journal of International Money and Finance, Elsevier, vol. 123(C).
- Degiannakis, Stavros & Filis, George, 2019. "Oil price volatility forecasts: What do investors need to know?," MPRA Paper 94445, University Library of Munich, Germany.
- Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- George Filis & Stavros Degiannakis & Zacharias Bragoudakis, 2022. "Forecasting macroeconomic indicators for Eurozone and Greece: How useful are the oil price assumptions?," Working Papers 296, Bank of Greece.
- Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).