IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v40y2013is1ps58-s66.html
   My bibliography  Save this item

Regional impact of changes in disposable income on Spanish electricity demand: A spatial econometric analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
  2. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
  3. Goel, Rajeev K. & Saunoris, James W., 2020. "Spatial spillovers of pollution onto the underground sector," Energy Policy, Elsevier, vol. 144(C).
  4. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
  5. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2018. "Electricity residential demand elasticities: Urban versus rural areas in Portugal," Energy, Elsevier, vol. 144(C), pages 627-632.
  6. Marco Baudino, 2020. "Environmental Engel curves in Italy: A spatial econometric investigation," Papers in Regional Science, Wiley Blackwell, vol. 99(4), pages 999-1018, August.
  7. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  8. Gutierrez-Lythgoe, Antonio, 2023. "Demanda energética residencial en España: Una aplicación del modelo QUAIDS [Residential energy demand in Spain: An application of the QUAIDS model]," MPRA Paper 120229, University Library of Munich, Germany.
  9. Fateh Belaïd & Christophe Rault & Camille Massié, 2021. "A Life-Cycle Analysis of French Household Electricity Demand," CESifo Working Paper Series 8814, CESifo.
  10. Daniel de Abreu Pereira Uhr & Júlia Gallego Ziero Uhr, André Luis Squarize Chagas, 2017. "Estimation of price and income elasticities for the Brazilian household electricity demand," Working Papers, Department of Economics 2017_12, University of São Paulo (FEA-USP).
  11. Kangjuan Lv & Yu Cheng & Yousen Wang, 2021. "Does regional innovation system efficiency facilitate energy-related carbon dioxide intensity reduction in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 789-813, January.
  12. Thomas M. Fullerton & Ileana M. Resendez & Adam G. Walke, 2015. "Upward Sloping Demand for a Normal Good? Residential Electricity in Arkansas," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1065-1072.
  13. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
  14. Giovanni Millo, 2022. "The generalized spatial random effects model in R," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.
  15. Jaime Sánchez-Ortiz & Teresa García-Valderrama & Vanessa Rodríguez-Cornejo & Yolanda Giner-Manso, 2020. "The effects of environmental regulation on the efficiency of distribution electricity companies in Spain," Energy & Environment, , vol. 31(1), pages 3-20, February.
  16. Shiwen Liu & Zhen Zhang & Junhua Yang & Wei Hu, 2022. "Exploring Increasing Urban Resident Electricity Consumption: The Spatial Spillover Effect of Resident Income," Energies, MDPI, vol. 15(12), pages 1-17, June.
  17. Doina Maria Radulescu & Philippe Sulger, 2021. "Interdependencies Between Countries in the Provision of Energy," CESifo Working Paper Series 8896, CESifo.
  18. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
  19. Vicente Ríos & Antonio Gómez & Pedro Pascual, 2021. "Raising the Accuracy of Shadow Economy Measurements," Hacienda Pública Española / Review of Public Economics, IEF, vol. 239(4), pages 71-125, November.
  20. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
  21. Radulescu, Doina & Sulger, Philippe, 2022. "Interdependencies between countries in the provision of energy," Energy Economics, Elsevier, vol. 107(C).
  22. Fateh Belaïd & Christophe Rault & Camille Massié, 2022. "A life-cycle theory analysis of French household electricity demand," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 501-530, April.
  23. Wang, Shaobin & Zhao, Chao & Liu, Hanbin & Tian, Xinglei, 2021. "Exploring the spatial spillover effects of low-grade coal consumption and influencing factors in China," Resources Policy, Elsevier, vol. 70(C).
  24. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
  25. Petrov, Mikhail & Serkov, Leonid & Kozhov, Konstantin, 2021. "Analysis of the spatial features of regional power consumption in the Russian Federation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 5-27.
  26. Gaivoronskaia, Elizaveta, 2020. "Electricity demand elasticity and regional effects: Spatial econometric approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 76-95.
  27. Wang, Shaobin & Liu, Haimeng & Pu, Haixia & Yang, Hao, 2020. "Spatial disparity and hierarchical cluster analysis of final energy consumption in China," Energy, Elsevier, vol. 197(C).
  28. Filippini, Massimo & Heimsch, Fabian, 2016. "The regional impact of a CO2 tax on gasoline demand: A spatial econometric approach," Resource and Energy Economics, Elsevier, vol. 46(C), pages 85-100.
  29. Park, Jongmun & Yun, Sun-Jin, 2022. "Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model," Energy, Elsevier, vol. 239(PE).
  30. Ruan, Fang-Li & Yan, Liang, 2022. "Interactions among electricity consumption, disposable income, wastewater discharge, and economic growth: Evidence from megacities in China from 1995 to 2018," Energy, Elsevier, vol. 260(C).
  31. Sun, Yeran & Wang, Shaohua & Zhang, Xucai & Chan, Ting On & Wu, Wenjie, 2021. "Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data," Energy, Elsevier, vol. 226(C).
  32. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.