IDEAS home Printed from https://ideas.repec.org/r/eee/empfin/v18y2011i1p160-173.html
   My bibliography  Save this item

Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
  2. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
  3. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
  4. Su Xu, 2017. "A VaR assuming Student t distribution not significantly different from a VaR assuming normal distribution," Risk Management, Palgrave Macmillan, vol. 19(3), pages 189-201, August.
  5. Bonato, Matteo & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2018. "Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach," Resources Policy, Elsevier, vol. 57(C), pages 196-212.
  6. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
  7. Huang, Zhuo & Liang, Fang & Wang, Tianyi & Li, Chao, 2021. "Modeling dynamic higher moments of crude oil futures," Finance Research Letters, Elsevier, vol. 39(C).
  8. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
  9. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
  10. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Downside/upside price spillovers between precious metals: A vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 84-102.
  11. Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
  12. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
  13. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
  14. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
  15. He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
  16. Małgorzata Just & Aleksandra Łuczak, 2020. "Assessment of Conditional Dependence Structures in Commodity Futures Markets Using Copula-GARCH Models and Fuzzy Clustering Methods," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
  17. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
  18. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
  19. He, Kaijian & Liu, Youjin & Yu, Lean & Lai, Kin Keung, 2016. "Multiscale dependence analysis and portfolio risk modeling for precious metal markets," Resources Policy, Elsevier, vol. 50(C), pages 224-233.
  20. Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
  21. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
  22. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
  23. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
  24. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
  25. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
  26. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
  27. Carnero, M. Angeles & León, Angel & Ñíguez, Trino-Manuel, 2023. "Skewness in energy returns: estimation, testing and retain-->implications for tail risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 178-189.
  28. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
  29. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen & Skander Slim, 2018. "Value‐at‐risk under market shifts through highly flexible models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 790-804, December.
  30. BenSaïda, Ahmed, 2015. "The frequency of regime switching in financial market volatility," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 63-79.
  31. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.