IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v178y2007i1p292-304.html
   My bibliography  Save this item

Network DEA efficiency in input-output models: With an application to OECD countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
  2. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
  3. Avkiran, Necmi K., 2009. "Opening the black box of efficiency analysis: An illustration with UAE banks," Omega, Elsevier, vol. 37(4), pages 930-941, August.
  4. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
  5. Q L Wei & T-S Chang, 2011. "Optimal system design series-network DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1109-1119, June.
  6. Chen, Ping-Chuan & Hung, Shiu-Wan, 2016. "An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 303-312.
  7. Francisco Javier Sáez-Fernández & Ignacio Jiménez-Hernández & María del Sol Ostos-Rey, 2020. "Seasonality and Efficiency of the Hotel Industry in the Balearic Islands: Implications for Economic and Environmental Sustainability," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
  8. Gurgul, Henryk & Lach, Łukasz, 2019. "Eco-efficiency analysis in generalized IO models: Methods and examples," MPRA Paper 96604, University Library of Munich, Germany.
  9. Alperovych, Yan & Amess, Kevin & Wright, Mike, 2013. "Private equity firm experience and buyout vendor source: What is their impact on efficiency?," European Journal of Operational Research, Elsevier, vol. 228(3), pages 601-611.
  10. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
  11. Huang, Tai-Hsin & Lin, Chung-I & Chen, Kuan-Chen, 2017. "Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies," Pacific-Basin Finance Journal, Elsevier, vol. 41(C), pages 93-110.
  12. Aparicio, Juan & Pastor, Jesús T. & Vidal, Fernando & Zofío, José L., 2017. "Evaluating productive performance: A new approach based on the product-mix problem consistent with Data Envelopment Analysis," Omega, Elsevier, vol. 67(C), pages 134-144.
  13. Ke Wang, 2013. "Efficiency evaluation of multistage supply chain with data envelopment analysis models," CEEP-BIT Working Papers 48, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  14. Malgorzata Sulimierska, 2014. "Total factor productivity estimation for Polish manufacturing industry: A comparison of alternative methods," Working Paper Series 6714, Department of Economics, University of Sussex Business School.
  15. Chen, Shanshan & Zhang, Ruchuan & Li, Peiwen & Li, Aijun, 2023. "How to improve the performance of China's energy-transport-economy-environment system: An analysis based on new strategy parallel-series input-output data envelopment analysis models," Energy, Elsevier, vol. 281(C).
  16. Jing Feng & Longlong Geng & Hui Liu & Xuehua Zhang, 2022. "RETRACTED ARTICLE: Efficiency evaluation of the high-tech industry chain with a two-stage data envelopment analysis approach," Operations Management Research, Springer, vol. 15(3), pages 1071-1080, December.
  17. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
  18. Tsung-Sheng Chang & Kaoru Tone & Quanling Wei, 2014. "Ownership-specified network DEA models," Annals of Operations Research, Springer, vol. 214(1), pages 73-98, March.
  19. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
  20. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
  21. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
  22. Pinto, Claudio, 2019. "Model and measure the relative efficiency of a four-stage production process. An NDEA multiplier relational model under different systems of resource distribution preferences between sub-processes," MPRA Paper 92617, University Library of Munich, Germany.
  23. Sumiko Asai, 2011. "Efficiency of Japanese Local Broadcasters," Journal of Media Economics, Taylor & Francis Journals, vol. 24(3), pages 158-173, September.
  24. Moriah B. Bostian & Cinzia Daraio & Rolf Fare & Shawna Grosskopf & Maria Grazia Izzo & Luca Leuzzi & Giancarlo Ruocco & William L. Weber, 2018. "Inference for Nonparametric Productivity Networks: A Pseudo-likelihood Approach," DIAG Technical Reports 2018-06, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  25. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2011. "The use of supply chain DEA models in operations management: A survey," MPRA Paper 31846, University Library of Munich, Germany.
  26. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
  27. Huang, Tai-Hsin & Lin, Chung-I & Wu, Ruei-Cian, 2019. "Assessing the marketing and investment efficiency of Taiwan’s life insurance firms under network structures," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 132-147.
  28. Konstantinos Petridis & Prasanta Kumar Dey & Ali Emrouznejad, 2017. "A branch and efficiency algorithm for the optimal design of supply chain networks," Annals of Operations Research, Springer, vol. 253(1), pages 545-571, June.
  29. Sahoo, Biresh K. & Zhu, Joe & Tone, Kaoru & Klemen, Bernhard M., 2014. "Decomposing technical efficiency and scale elasticity in two-stage network DEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 584-594.
  30. Javad Gerami & Reza Kiani Mavi & Reza Farzipoor Saen & Neda Kiani Mavi, 2023. "A novel network DEA-R model for evaluating hospital services supply chain performance," Annals of Operations Research, Springer, vol. 324(1), pages 1041-1066, May.
  31. Miki Tsutsui & Kaoru Tone, 2007. "Network DEA: A slacks-based measure approach," GRIPS Discussion Papers 07-08, National Graduate Institute for Policy Studies.
  32. Antonio Peyrache & Maria C. A. Silva, 2019. "The Inefficiency of Production Systems and its decomposition," CEPA Working Papers Series WP052019, School of Economics, University of Queensland, Australia.
  33. Soheila Seyedboveir & Sohrab Kordrostami & Behrouz Daneshian & Alireza Amirteimoori, 2017. "Cost Efficiency Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-13, October.
  34. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
  35. Khalili-Damghani, Kaveh & Tavana, Madjid & Santos-Arteaga, Francisco J. & Mohtasham, Sima, 2015. "A dynamic multi-stage data envelopment analysis model with application to energy consumption in the cotton industry," Energy Economics, Elsevier, vol. 51(C), pages 320-328.
  36. Sulimierska, Malgorzata, 2016. "The impact of capital account liberalisation on productivity growth: the evidence from Poland since 1995," Economics PhD Theses 1216, Department of Economics, University of Sussex Business School.
  37. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
  38. Xionghe Qin & Debin Du, 2017. "Do External or Internal Technology Spillovers Have a Stronger Influence on Innovation Efficiency in China?," Sustainability, MDPI, vol. 9(9), pages 1-17, September.
  39. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
  40. Wang, Yizhong & Jeong, Sujong & Hang, Ye & Wang, Qunwei, 2024. "Multi-sector environmental efficiency and productivity: A general Leontief optimization method," Omega, Elsevier, vol. 126(C).
  41. Zhang, Bin & Luo, Yuan & Chiu, Yung-Ho, 2019. "Efficiency evaluation of China's high-tech industry with a multi-activity network data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 2-9.
  42. Walheer, Barnabe & Hudik, Marek, 2019. "Reallocation of resources in multidivisional firms: A nonparametric approach," International Journal of Production Economics, Elsevier, vol. 214(C), pages 196-205.
  43. Hiroyuki Kawaguchi & Kaoru Tone & Miki Tsutsui, 2014. "Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model," Health Care Management Science, Springer, vol. 17(2), pages 101-112, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.