IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v173y2006i2p508-518.html
   My bibliography  Save this item

On the exact solution of a facility layout problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
  2. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
  3. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
  4. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
  5. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
  6. Kothari, Ravi & Ghosh, Diptesh, 2012. "Scatter Search Algorithms for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  7. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
  8. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
  9. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
  10. Ghosh, Diptesh, 2011. "An Exponential Neighborhood Local Search Algorithm for the Single Row Facility Location Problem," IIMA Working Papers WP2011-08-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  11. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
  12. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
  13. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
  14. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," IIMA Working Papers WP2012-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  15. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
  16. Ahonen, H. & de Alvarenga, A.G. & Amaral, A.R.S., 2014. "Simulated annealing and tabu search approaches for the Corridor Allocation Problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 221-233.
  17. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
  18. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
  19. Kothari, Ravi & Ghosh, Diptesh, 2012. "Tabu Search for the Single Row Facility Layout Problem in FMS using a 3-opt Neighborhood," IIMA Working Papers WP2012-02-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  20. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
  21. Azadeh, A. & Moghaddam, M. & Asadzadeh, S.M. & Negahban, A., 2011. "An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: The case of injection process with ambiguous data," European Journal of Operational Research, Elsevier, vol. 214(3), pages 768-779, November.
  22. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Lin-Kernighan Heuristic for Single Row Facility Layout," IIMA Working Papers WP2012-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
  23. Kothari, Ravi & Ghosh, Diptesh, 2011. "The Single Row Facility Layout Problem: State of the Art," IIMA Working Papers WP2011-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
  24. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
  25. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.
  26. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.