IDEAS home Printed from https://ideas.repec.org/r/eee/ecolet/v172y2018icp97-101.html
   My bibliography  Save this item

Liquidity uncertainty and Bitcoin’s market microstructure

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
  2. Kristina Trajkovic, 2022. "Licensing and supervision in the field of digital assets," Working Papers Bulletin 5, National Bank of Serbia.
  3. Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
  4. Ladislav Kristoufek, 2020. "Grandpa, grandpa, tell me the one about Bitcoin being a safe haven: Evidence from the COVID-19 pandemics," Papers 2004.00047, arXiv.org.
  5. Saketh Aleti & Bruce Mizrach, 2021. "Bitcoin spot and futures market microstructure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 194-225, February.
  6. Scharnowski, Stefan, 2021. "Understanding Bitcoin liquidity," Finance Research Letters, Elsevier, vol. 38(C).
  7. Mudassar Hasan & Muhammad Abubakr Naeem & Muhammad Arif & Syed Jawad Hussain Shahzad & Xuan Vinh Vo, 2022. "Liquidity connectedness in cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
  8. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
  9. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
  10. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
  11. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
  12. Zhang, Pengcheng & Kong, Deli & Xu, Kunpeng & Qi, Jiayin, 2024. "Global economic policy uncertainty and the stability of cryptocurrency returns: The role of liquidity volatility," Research in International Business and Finance, Elsevier, vol. 67(PB).
  13. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
  14. Foley, Sean & Krekel, William & Mollica, Vito & Svec, Jiri, 2023. "Not so fast: Identifying and remediating slow and imprecise cryptocurrency exchange data," Finance Research Letters, Elsevier, vol. 51(C).
  15. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
  16. Thomas Dimpfl & Stefania Odelli, 2020. "Bitcoin Price Risk—A Durations Perspective," JRFM, MDPI, vol. 13(7), pages 1-18, July.
  17. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
  18. Mensi, Walid & Lee, Yun-Jung & Al-Yahyaee, Khamis Hamed & Sensoy, Ahmet & Yoon, Seong-Min, 2019. "Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 31(C), pages 19-25.
  19. Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
  20. Urom, Christian & Abid, Ilyes & Guesmi, Khaled & Chevallier, Julien, 2020. "Quantile spillovers and dependence between Bitcoin, equities and strategic commodities," Economic Modelling, Elsevier, vol. 93(C), pages 230-258.
  21. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
  22. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
  23. Donglian Ma & Pengxiang Zhai, 2021. "The Accuracy of the Tick Rule in the Bitcoin Market," SAGE Open, , vol. 11(2), pages 21582440211, May.
  24. Tang, Tao & Wang, Yanchen, 2022. "Liquidity Shocks, Price Volatilities, and Risk-managed Strategy: Evidence from Bitcoin and Beyond," Journal of Multinational Financial Management, Elsevier, vol. 64(C).
  25. Wei Zhang & Yi Li, 2023. "Liquidity risk and expected cryptocurrency returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 472-492, January.
  26. Dejian Yu & Libo Sheng, 2020. "Knowledge diffusion paths of blockchain domain: the main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 471-497, October.
  27. Jeon, Yoontae & Samarbakhsh, Laleh & Hewitt, Kenji, 2021. "Fragmentation in the Bitcoin market: Evidence from multiple coexisting order books," Finance Research Letters, Elsevier, vol. 39(C).
  28. Huynh, Toan Luu Duc, 2021. "Does Bitcoin React to Trump’s Tweets?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
  29. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
  30. Thomas E. Koker & Dimitrios Koutmos, 2020. "Cryptocurrency Trading Using Machine Learning," JRFM, MDPI, vol. 13(8), pages 1-7, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.