IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v97y2012icp38-48.html
   My bibliography  Save this item

Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Manfrida, Giampaolo & Secchi, Riccardo, 2014. "Seawater pumping as an electricity storage solution for photovoltaic energy systems," Energy, Elsevier, vol. 69(C), pages 470-484.
  2. Jakub Jurasz & Alexander Kies, 2018. "Day-Ahead Probabilistic Model for Scheduling the Operation of a Wind Pumped-Storage Hybrid Power Station: Overcoming Forecasting Errors to Ensure Reliability of Supply to the Grid," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
  3. Osório, G.J. & Rodrigues, E.M.G. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "New control strategy for the weekly scheduling of insular power systems with a battery energy storage system," Applied Energy, Elsevier, vol. 154(C), pages 459-470.
  4. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
  5. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
  6. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
  7. Bhattacharjee, Subhadeep & Nayak, Pabitra Kumar, 2019. "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renewable Energy, Elsevier, vol. 135(C), pages 288-302.
  8. Tawil, Tony El & Charpentier, Jean Frédéric & Benbouzid, Mohamed, 2018. "Sizing and rough optimization of a hybrid renewable-based farm in a stand-alone marine context," Renewable Energy, Elsevier, vol. 115(C), pages 1134-1143.
  9. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
  10. Psarros, Georgios N. & Dratsas, Pantelis A. & Papathanassiou, Stavros A., 2021. "A comparison between central- and self-dispatch storage management principles in island systems," Applied Energy, Elsevier, vol. 298(C).
  11. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
  12. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
  13. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
  14. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
  15. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
  16. Bayón, L. & Grau, J.M. & Ruiz, M.M. & Suárez, P.M., 2016. "A comparative economic study of two configurations of hydro-wind power plants," Energy, Elsevier, vol. 112(C), pages 8-16.
  17. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
  18. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.
  19. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
  20. Johnston, Lewis & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Corchero-García, Cristina & Cruz-Zambrano, Miguel, 2015. "Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants," Applied Energy, Elsevier, vol. 137(C), pages 660-669.
  21. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
  22. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
  23. Liao, Siyang & Xu, Jian & Sun, Yuanzhang & Bao, Yi, 2018. "Local utilization of wind electricity in isolated power systems by employing coordinated control scheme of industrial energy-intensive load," Applied Energy, Elsevier, vol. 217(C), pages 14-24.
  24. Prasasti, E.B. & Aouad, M. & Joseph, M. & Zangeneh, M. & Terheiden, K., 2024. "Optimization of pumped hydro energy storage design and operation for offshore low-head application and grid stabilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  25. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
  26. Kapsali, M. & Anagnostopoulos, J.S., 2017. "Investigating the role of local pumped-hydro energy storage in interconnected island grids with high wind power generation," Renewable Energy, Elsevier, vol. 114(PB), pages 614-628.
  27. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
  28. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
  29. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
  30. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
  31. Xianxun Wang & Lihua Chen & Qijuan Chen & Yadong Mei & Hao Wang, 2018. "Model and Analysis of Integrating Wind and PV Power in Remote and Core Areas with Small Hydropower and Pumped Hydropower Storage," Energies, MDPI, vol. 11(12), pages 1-24, December.
  32. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
  33. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
  34. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2016. "The exploitation of electricity production projects from Renewable Energy Sources for the social and economic development of remote communities. The case of Greece: An example to avoid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 341-349.
  35. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.
  36. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
  37. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
  38. Weibel, Sebastian & Madlener, Reinhard, 2015. "Cost-Effective Design of Ringwall Storage Hybrid Power Plants: A Real Options Analysis," FCN Working Papers 17/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.