IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i6p2273-2278.html
   My bibliography  Save this item

CO2 emissions of Turkish manufacturing industry: A decomposition analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bo Chen & Han Wang & Jishun Zhou, 2022. "Producer service foreign direct investment and pollution in China," The World Economy, Wiley Blackwell, vol. 45(10), pages 3294-3311, October.
  2. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
  3. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
  4. K. Narayanan & Santosh K. Sahu, 2014. "Energy Consumption Response to Climate Change: Policy Options for India," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 123-133, July.
  5. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
  6. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
  7. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
  8. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
  9. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
  10. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
  11. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  12. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
  13. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
  14. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
  15. Lu, Shibao & Wang, Jianhua & Shang, Yizi & Bao, Haijun & Chen, Huixiong, 2017. "Potential assessment of optimizing energy structure in the city of carbon intensity target," Applied Energy, Elsevier, vol. 194(C), pages 765-773.
  16. Yue, Xuanyu & Byrne, Julie, 2024. "Identifying the determinants of carbon emissions of individual airlines around the world," Journal of Air Transport Management, Elsevier, vol. 115(C).
  17. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
  18. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
  19. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
  20. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
  21. Tarek Ghazouani, 2022. "The Effect of FDI Inflows, Urbanization, Industrialization, and Technological Innovation on CO2 Emissions: Evidence from Tunisia," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3265-3295, December.
  22. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.
  23. Akbostancı, Elif & Tunç, Gül İpek & Türüt-Aşık, Serap, 2018. "Drivers of fuel based carbon dioxide emissions: The case of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2599-2608.
  24. Cong Minh Huynh, 2020. "Shadow economy and air pollution in developing Asia: what is the role of fiscal policy?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(3), pages 357-381, July.
  25. Nibedita, B. & Irfan, M., 2024. "Energy mix diversification in emerging economies: An econometric analysis of determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  26. Karabag, Solmaz Filiz, 2019. "Factors impacting firm failure and technological development: A study of three emerging-economy firms," Journal of Business Research, Elsevier, vol. 98(C), pages 462-474.
  27. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
  28. Muhammad Azrin Shah Razali & Mahirah Kamaludin & A.A. Azlina, 2022. "Consumer Preference for Energy Label in the Purchase Decision of Refrigerator: A Discrete Choice Experiment Approach in the East Coast, Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 441-450, May.
  29. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
  30. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
  31. Gangfei Luo & Tomas Baležentis & Shouzhen Zeng & JiaShun Pan, 2023. "Creating a decarbonized economy: Decoupling effects and driving factors of CO2 emission of 28 industries in China," Energy & Environment, , vol. 34(7), pages 2413-2431, November.
  32. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
  33. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
  34. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
  35. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
  36. Sami Ur Rahman & Faisal Faisal & Fariha Sami & Adnan Ali & Rajnesh Chander & Muhammad Yusuf Amin, 2024. "Investigating the Nexus Between Inflation, Financial Development, and Carbon Emission: Empirical Evidence from FARDL and Frequency Domain Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 292-318, March.
  37. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
  38. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
  39. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.
  40. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
  41. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
  42. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
  43. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
  44. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
  45. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
  46. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
  47. John Abdulai Jinapor & Joshua Yindenaba Abor & Michael Graham, 2024. "FDI, industrialisation and environmental quality in SSA—the role of institutional quality towards environmental sustainability," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
  48. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
  49. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
  50. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
  51. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
  52. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
  53. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
  54. Alshammari, Yousef M., 2021. "Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia," Energy Policy, Elsevier, vol. 150(C).
  55. Mohd Irfan & Bamadev Mahapatra & Raj Kumar Ojha, 2023. "Energy Efficiency and Carbon Emissions in Developed and Developing Economies: Investigating the Moderating Role of Financial Development," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 437-455, June.
  56. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
  57. Victor Manuel Ferreira Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
  58. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
  59. Mahapatra, Bamadev & Irfan, Mohd, 2021. "Asymmetric impacts of energy efficiency on carbon emissions: A comparative analysis between developed and developing economies," Energy, Elsevier, vol. 227(C).
  60. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
  61. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
  62. Chung, William & Zhou, Guanghui & Yeung, Iris M.H., 2013. "A study of energy efficiency of transport sector in China from 2003 to 2009," Applied Energy, Elsevier, vol. 112(C), pages 1066-1077.
  63. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
  64. Gengxia Yang & Liang Jia, 2022. "Estimation of Carbon Emissions from Tourism Transport and Analysis of Its Influencing Factors in Dunhuang," Sustainability, MDPI, vol. 14(21), pages 1-11, November.
  65. Daberechi Chikezie Ekwueme & Taiwo Temitope Lasisi & Kayode Kolawole Eluwole, 2023. "Environmental sustainability in Asian countries: Understanding the criticality of economic growth, industrialization, tourism import, and energy use," Energy & Environment, , vol. 34(5), pages 1592-1618, August.
  66. Shigeto, Sawako & Yamagata, Yoshiki & Ii, Ryota & Hidaka, Masato & Horio, Masayuki, 2012. "An easily traceable scenario for 80% CO2 emission reduction in Japan through the final consumption-based CO2 emission approach: A case study of Kyoto-city," Applied Energy, Elsevier, vol. 90(1), pages 201-205.
  67. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
  68. Oliver I. Inah & Fidelis I. Abam & Bethrand N. Nwankwojike, 2022. "Exploring the CO2 emissions drivers in the Nigerian manufacturing sector through decomposition analysis and the potential of carbon tax (CAT) policy on CO2 mitigation," Future Business Journal, Springer, vol. 8(1), pages 1-22, December.
  69. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
  70. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
  71. Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
  72. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
  73. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
  74. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
  75. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.