My bibliography
Save this item
Structural decomposition of energy use in Brazil from 1970 to 1996
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
- Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
- Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
- Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
- Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
- José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
- Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
- Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
- Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Nooraddin Sharify & Ramezan Hosseinzadeh, 2015. "Sources of Change in Energy Consumption in Iran: A Structural Decomposition Analysis," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(3), pages 325-339, Autumn.
- Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
- Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
- Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
- AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
- Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
- Inglesi-Lotz, Roula & Blignaut, James N., 2011.
"South Africa’s electricity consumption: A sectoral decomposition analysis,"
Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
- Roula Inglesi-Lotz & James Blignaut, 2011. "South Africa's Electricity Consumption: A Sectoral Decomposition Analysis," Working Papers 201105, University of Pretoria, Department of Economics.
- Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
- Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
- de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
- João Tovar Jalles, 2019. "Polluting Emissions and GDP: Decoupling Evidence from Brazilian States," Working Papers REM 2019/0104, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
- Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
- Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
- Vieira, Nathália Duarte Braz & Nogueira, Luiz Augusto Horta & Haddad, Jamil, 2018. "An assessment of CO2 emissions avoided by energy-efficiency programs: A general methodology and a case study in Brazil," Energy, Elsevier, vol. 142(C), pages 702-715.
- Guokui Wang & Xingpeng Chen & Zilong Zhang & Chaolan Niu, 2015. "Influencing Factors of Energy-Related CO 2 Emissions in China: A Decomposition Analysis," Sustainability, MDPI, vol. 7(10), pages 1-19, October.
- Curtin, Richard, 2011. "An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006," Applied Energy, Elsevier, vol. 88(11), pages 3773-3781.
- Xin Xu & Yuming Shen & Hanchu Liu, 2022. "What Cause Large Spatiotemporal Differences in Carbon Intensity of Energy-Intensive Industries in China? Evidence from Provincial Data during 2000–2019," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
- Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
- Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
- Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
- Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
- Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
- Mariana Carmelia Balanica-Dragomir & Gabriel Murariu & Lucian Puiu Georgescu, 2024. "A Logarithmic Mean Divisia Index Decomposition of CO$_2$ Emissions from Energy Use in Romania," Papers 2403.04354, arXiv.org.
- Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
- Manfred Lenzen & Maria Cecilia Pinto de Moura & Arne Geschke & Keiichiro Kanemoto & Daniel Dean Moran, 2012. "A Cycling Method For Constructing Input--Output Table Time Series From Incomplete Data," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 413-432, February.
- Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
- Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
- Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
- Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
- Daniel Croner & Ivan Frankovic, 2018.
"A Structural Decomposition Analysis of Global and NationalEnergy Intensity Trends,"
The Energy Journal, , vol. 39(2), pages 103-122, March.
- Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Croner, Daniel & Frankovic, Ivan, 2016. "A structural decomposition analysis of global and national energy intensity trends," ECON WPS - Working Papers in Economic Theory and Policy 08/2016, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit.
- Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
- Yao Bo Shi & Xin Xin Zhao & Chyi-Lu Jang & Chun-Ping Chang, 2019. "Decoupling effect between economic development and environmental pollution: A spatial-temporal investigation using 31 provinces in China," Energy & Environment, , vol. 30(5), pages 755-775, August.
- Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
- Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
- Alises, Ana & Vassallo, José Manuel, 2015. "Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an Input–Output structural decomposition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 141-157.
- Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
- Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
- Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
- Daniel de Abreu Pereira Uhr & Júlia Gallego Ziero Uhr, André Luis Squarize Chagas, 2017. "Estimation of price and income elasticities for the Brazilian household electricity demand," Working Papers, Department of Economics 2017_12, University of São Paulo (FEA-USP).
- Gao, Yuan & Chong, Chin Hao & Liu, Gengyuan & Casazza, Marco & Xiong, Xiaoping & Liu, Bojie & Zhou, Xuanru & Zhou, Xiaoyong & Li, Zheng & Ni, Weidou & Hao, Yan & Ma, Linwei, 2024. "Identification of carbon responsibility factors based on energy consumption from 2005 to 2020 in China," Energy, Elsevier, vol. 296(C).
- Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
- Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
- Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
- Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013.
"Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis,"
Applied Energy, Elsevier, vol. 101(C), pages 323-332.
- Jing-Li Fan & Hua Liao & Qiao-Mei Liang & Hirokazu Tatano & Chun-Feng Liu & Yi-Ming Wei, 2011. "Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis," CEEP-BIT Working Papers 16, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
- Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
- Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
- Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
- Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
- Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
- Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
- Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
- Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
- Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
- repec:eco:journ2:2017-04-31 is not listed on IDEAS
- Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
- Barros, Carlos P. & Gil-Alana, Luis A. & Wanke, Peter, 2016. "Energy production in Brazil: Empirical facts based on persistence, seasonality and breaks," Energy Economics, Elsevier, vol. 54(C), pages 88-95.
- Lu, Qinli & Fang, Kai & Heijungs, Reinout & Feng, Kuishuang & Li, Jiashuo & Wen, Qi & Li, Yanmei & Huang, Xianjin, 2020. "Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative," Applied Energy, Elsevier, vol. 280(C).
- Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
- Zhipeng Tang & Jialing Zou & Shuang Wu, 2018. "What Drove Changes in the Embodied Energy Consumption of Guangdong’s Exports from 2007–2012?," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
- Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
- Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2013. "Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model," Energy, Elsevier, vol. 63(C), pages 225-232.
- Thomas Wiedmann, 2017. "On the decomposition of total impact multipliers in a supply and use framework," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-11, December.
- Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
- Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
- Anne Owen & Kjartan Steen-Olsen & John Barrett & Thomas Wiedmann & Manfred Lenzen, 2014. "A Structural Decomposition Approach To Comparing Mrio Databases," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 262-283, September.
- Achão, Carla & Schaeffer, Roberto, 2009. "Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980-2007 period: Measuring the activity, intensity and structure effects," Energy Policy, Elsevier, vol. 37(12), pages 5208-5220, December.
- Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
- Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
- Yawen Han & Shigemi Kagawa & Fumiya Nagashima & Keisuke Nansai, 2019. "Sources of China’s Fossil Energy-Use Change," Energies, MDPI, vol. 12(4), pages 1-16, February.
- Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
- Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
- Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
- Rodrigues, João F.D. & Rueda-Cantuche, José M., 2013. "A two-stage econometric method for the estimation of carbon multipliers with rectangular supply and use tables," Ecological Economics, Elsevier, vol. 95(C), pages 206-212.
- Yousaf Ali & Rosita Pretaroli & Muhammad Sabir & Claudio Socci & Francesca Severini, 2020. "Structural changes in carbon dioxide (CO2) emissions in the United Kingdom (UK): an emission multiplier product matrix (EMPM) approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1545-1564, December.
- Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
- Manfred Lenzen & Robert A. Cummins, 2013. "Happiness versus the Environment—A Case Study of Australian Lifestyles," Challenges, MDPI, vol. 4(1), pages 1-19, May.