IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v310y2022ics0306261922000927.html
   My bibliography  Save this item

Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
  2. Elisabetta Allevi & Maria Elena Giuli & Ruth Domínguez & Giorgia Oggioni, 2023. "Evaluating the role of waste-to-energy and cogeneration units in district heatings and electricity markets," Computational Management Science, Springer, vol. 20(1), pages 1-49, December.
  3. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
  4. Ye, Jianan & Xie, Min & Zhang, Shiping & Huang, Ying & Liu, Mingbo & Wang, Qiong, 2023. "Stochastic optimal scheduling of electricity–hydrogen enriched compressed natural gas urban integrated energy system," Renewable Energy, Elsevier, vol. 211(C), pages 1024-1044.
  5. Wu, Qunli & Li, Chunxiang, 2024. "A bi-level optimization framework for the power-side virtual power plant participating in day-ahead wholesale market as a price-maker considering uncertainty," Energy, Elsevier, vol. 304(C).
  6. Du, Yida & Li, Xiangguang & Tan, Caixia & Tan, Zhongfu, 2024. "Two-stage multi-objective distributionally robust operation optimization and benefits equalization of an off-grid type electric-hydrogen-ammonia-methanol coupling system," Renewable Energy, Elsevier, vol. 236(C).
  7. Guo, Xusheng & Lou, Suhua & Chen, Zhe & Wu, Yaowu, 2022. "Flexible operation of integrated energy system with HVDC infeed considering multi-retrofitted combined heat and power units," Applied Energy, Elsevier, vol. 325(C).
  8. Li, Qiang & Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Li, Jiajia & Zhou, Guowen & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2024. "Multi-time scale scheduling for virtual power plants: Integrating the flexibility of power generation and multi-user loads while considering the capacity degradation of energy storage systems," Applied Energy, Elsevier, vol. 362(C).
  9. Ju, Liwei & Lv, ShuoShuo & Zhang, Zheyu & Li, Gen & Gan, Wei & Fang, Jiangpeng, 2024. "Data-driven two-stage robust optimization dispatching model and benefit allocation strategy for a novel virtual power plant considering carbon-green certificate equivalence conversion mechanism," Applied Energy, Elsevier, vol. 362(C).
  10. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
  11. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
  12. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).
  13. Zhang, Kaoshe & Gao, Congchong & Zhang, Gang & Xie, Tuo & Li, Hua, 2024. "Electricity and heat sharing strategy of regional comprehensive energy multi-microgrid based on double-layer game," Energy, Elsevier, vol. 293(C).
  14. Lu, Xin & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach," Applied Energy, Elsevier, vol. 358(C).
  15. Xiong, Houbo & Luo, Fengji & Yan, Mingyu & Yan, Lei & Guo, Chuangxin & Ranzi, Gianluca, 2024. "Distributionally robust and transactive energy management scheme for integrated wind-concentrated solar virtual power plants," Applied Energy, Elsevier, vol. 368(C).
  16. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
  17. Meng, Yuan & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "A Holistic P2P market for active and reactive energy trading in VPPs considering both financial benefits and network constraints," Applied Energy, Elsevier, vol. 356(C).
  18. Zhang, Junxia & Li, Xingmei & Jia, Dongqing & Zhou, Yuexin, 2023. "A Bi-level programming for union battery swapping stations location-routing problem under joint distribution and cost allocation," Energy, Elsevier, vol. 272(C).
  19. Li, Jiamei & Ai, Qian & Chen, Minyu, 2023. "Strategic behavior modeling and energy management for electric-thermal-carbon-natural gas integrated energy system considering ancillary service," Energy, Elsevier, vol. 278(C).
  20. Kong, Feng & Zhang, Dongyue & Song, Minghao & Zhou, Xuecong & Wang, Yuwei, 2024. "Collaborative scheduling and benefit allocation for waste-to-energy, hydrogen storage, and power-to-gas under uncertainties with temporal relevance," Energy, Elsevier, vol. 307(C).
  21. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
  22. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).
  23. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).
  24. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
  25. Liu, Yi & Xu, Xiao & Liu, Youbo & Liu, Junyong & Hu, Weihao & Yang, Nan & Jawad, Shafqat & Wei, Zhaobin, 2024. "Operational optimization of a rural multi-energy system supported by a joint biomass-solid-waste-energy conversion system and supply chain," Energy, Elsevier, vol. 312(C).
  26. Zhang, Bin & Wu, Xuewei & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Coordinated carbon capture systems and power-to-gas dynamic economic energy dispatch strategy for electricity–gas coupled systems considering system uncertainty: An improved soft actor–critic approach," Energy, Elsevier, vol. 271(C).
  27. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).
  28. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.