IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v245y2019icp31-50.html
   My bibliography  Save this item

Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
  2. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
  3. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  4. Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
  5. Meneghetti, Antonella & Dal Magro, Fabio & Romagnoli, Alessandro, 2021. "Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units," Energy, Elsevier, vol. 232(C).
  6. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
  7. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
  8. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  9. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
  10. Zhu, Rui & Kondor, Dániel & Cheng, Cheng & Zhang, Xiaohu & Santi, Paolo & Wong, Man Sing & Ratti, Carlo, 2022. "Solar photovoltaic generation for charging shared electric scooters," Applied Energy, Elsevier, vol. 313(C).
  11. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
  12. Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2022. "Thermoeconomic Analysis of Biomethane Production Plants: A Dynamic Approach," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
  13. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
  14. Ahmed, Abdelsalam A. & Ramadan, Haitham S., 2020. "Prototype implementation of advanced electric vehicles drivetrain system: Verification and validation," Applied Energy, Elsevier, vol. 266(C).
  15. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
  16. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
  17. Cristina Martín & Tony Castillo-Calzadilla & Kristina Zabala & Eneko Arrizabalaga & Patxi Hernández & Lara Mabe, 2021. "The opportunity for smart city projects at municipal scale: Implementing a positive energy district in Zorrozaurre," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 99(01), pages 119-149.
  18. Antonella Meneghetti & Chiara Pagnin & Patrizia Simeoni, 2021. "Decarbonizing the Cold Chain: Long-Haul Refrigerated Deliveries with On-Board Photovoltaic Energy Integration," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  19. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
  20. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
  21. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
  22. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
  23. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  24. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
  25. Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
  26. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.