IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v149y2015icp1-12.html
   My bibliography  Save this item

Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
  2. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.
  3. Amiri Rad, Ehsan & Mohammadi, Saeed & Tayyeban, Edris, 2020. "Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures," Energy, Elsevier, vol. 194(C).
  4. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Optimization of the boiler pressure and working fluid in a binary organic Rankine cycle for different heat sources," Energy, Elsevier, vol. 238(PA).
  5. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
  6. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
  7. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
  8. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
  9. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
  10. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
  11. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
  12. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
  13. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
  14. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
  15. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
  16. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
  17. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
  18. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
  19. Li, Jian & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan & Yang, Zhen, 2019. "Thermo-economic performance evaluation of emerging liquid-separated condensation method in single-pressure and dual-pressure evaporation organic Rankine cycle systems," Applied Energy, Elsevier, vol. 256(C).
  20. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling," Applied Energy, Elsevier, vol. 235(C), pages 1400-1414.
  21. Athanasios G. Vallis & Theodoros C. Zannis & Elias A. Yfantis & Efthimios G. Pariotis & John S. Katsanis & Konstantina D. Asimakopoulou, 2020. "Thermo-Economic Study of a Regenerative Dual-Loop ORC System Coupled to the Main Diesel Engines of a General Support Vessel," Energies, MDPI, vol. 13(11), pages 1-45, June.
  22. Athanasios G. Vallis & Theodoros C. Zannis & Evangelos V. Hristoforou & Elias A. Yfantis & Efthimios G. Pariotis & Dimitrios T. Hountalas & John S. Katsanis, 2022. "Design of Container Ship Main Engine Waste Heat Recovery Supercritical CO 2 Cycles, Optimum Cycle Selection through Thermo-Economic Optimization with Genetic Algorithm and Its Exergo-Economic and Exer," Energies, MDPI, vol. 15(15), pages 1-30, July.
  23. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
  24. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
  25. Marques, C.H. & Belchior, C.R.P. & Caprace, J.-D., 2018. "Optimising the engine-propeller matching for a liquefied natural gas carrier under rough weather," Applied Energy, Elsevier, vol. 232(C), pages 187-196.
  26. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
  27. Du, Yadong & Hu, Chenxing & Yang, Ce & Wang, Haimei & Dong, Wuqiang, 2022. "Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine," Energy, Elsevier, vol. 239(PD).
  28. Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
  29. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
  30. Konur, Olgun & Yuksel, Onur & Aykut Korkmaz, S. & Ozgur Colpan, C. & Saatcioglu, Omur Y. & Koseoglu, Burak, 2023. "Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system," Energy, Elsevier, vol. 262(PA).
  31. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
  32. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
  33. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
  34. Tsai, Yu-Chun & Feng, Yong-Qiang & Shuai, Yong & Lai, Jhao-Hong & Leung, Michael K.H. & Wei, Yen & Hsu, Hua-Yi & Hung, Tzu-Chen, 2023. "Experimental validation of a 0.3 kW ORC for the future purposes in the study of low-grade thermal to power conversion," Energy, Elsevier, vol. 285(C).
  35. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
  36. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
  37. Imran, Muhammad & Haglind, Fredrik & Lemort, Vincent & Meroni, Andrea, 2019. "Optimization of organic rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system," Energy, Elsevier, vol. 180(C), pages 229-241.
  38. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
  39. Mondejar, Maria E. & Ahlgren, Fredrik & Thern, Marcus & Genrup, Magnus, 2017. "Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel," Applied Energy, Elsevier, vol. 185(P2), pages 1324-1335.
  40. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
  41. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
  42. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
  43. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
  44. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
  45. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
  46. Panesar, Angad Singh, 2017. "An innovative Organic Rankine Cycle system for integrated cooling and heat recovery," Applied Energy, Elsevier, vol. 186(P3), pages 396-407.
  47. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
  48. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
  49. Qizhi Gao & Senyao Zhao & Zhixiang Zhang & Ji Zhang & Yuan Zhao & Yongchao Sun & Dezhi Li & Han Yuan, 2023. "Performance Analysis and Multi-Objective Optimization of a Cooling-Power-Desalination Combined Cycle for Shipboard Diesel Exhaust Heat Recovery," Sustainability, MDPI, vol. 15(24), pages 1-32, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.