IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v113y2014icp788-807.html
   My bibliography  Save this item

Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Giovanni Francesco Giuzio & Adolfo Palombo, 2021. "Improving the Efficiency of Maritime Infrastructures through a BIM-Based Building Energy Modelling Approach: A Case Study in Naples, Italy," Energies, MDPI, vol. 14(16), pages 1-24, August.
  2. Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.
  3. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
  4. Vassiliades, C. & Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2022. "Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis," Renewable Energy, Elsevier, vol. 186(C), pages 845-863.
  5. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
  6. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
  7. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.
  8. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
  9. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
  10. Bezaatpour, Javad & Ghiasirad, Hamed & Bezaatpour, Mojtaba & Ghaebi, Hadi, 2022. "Towards optimal design of photovoltaic/thermal facades: Module-based assessment of thermo-electrical performance, exergy efficiency and wind loads," Applied Energy, Elsevier, vol. 325(C).
  11. Kontoleon, K.J., 2015. "Glazing solar heat gain analysis and optimization at varying orientations and placements in aspect of distributed radiation at the interior surfaces," Applied Energy, Elsevier, vol. 144(C), pages 152-164.
  12. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
  13. Ghiaus, Christian & Ahmad, Naveed, 2020. "Thermal circuits assembling and state-space extraction for modelling heat transfer in buildings," Energy, Elsevier, vol. 195(C).
  14. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
  15. Barone, Giovanni & Zacharopoulos, Aggelos & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn, 2022. "Concentrating PhotoVoltaic glazing (CoPVG) system: Modelling and simulation of smart building façade," Energy, Elsevier, vol. 238(PB).
  16. Buonomano, Annamaria & Guarino, Francesco, 2020. "The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
  17. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
  18. Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Russo, G., 2023. "A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  19. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).
  20. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Adolfo Palombo, 2019. "Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room," Energies, MDPI, vol. 12(21), pages 1-39, October.
  21. Anna Laura Pisello & Federico Rossi & Franco Cotana, 2014. "Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings," Energies, MDPI, vol. 7(4), pages 1-19, April.
  22. Mikkola, Jani & Lund, Peter D., 2014. "Models for generating place and time dependent urban energy demand profiles," Applied Energy, Elsevier, vol. 130(C), pages 256-264.
  23. Sabina Jordan & Jože Hafner & Tilmann E. Kuhn & Andraž Legat & Martina Zbašnik-Senegačnik, 2015. "Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations," Sustainability, MDPI, vol. 7(10), pages 1-23, September.
  24. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
  25. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
  26. Annamaria Buonomano, 2016. "Code-to-Code Validation and Application of a Dynamic Simulation Tool for the Building Energy Performance Analysis," Energies, MDPI, vol. 9(4), pages 1-29, April.
  27. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
  28. Calise, F. & Cappiello, F. & D'Agostino, D. & Vicidomini, M., 2021. "Heat metering for residential buildings: A novel approach through dynamic simulations for the calculation of energy and economic savings," Energy, Elsevier, vol. 234(C).
  29. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
  30. Buonomano, Annamaria & Montanaro, Umberto & Palombo, Adolfo & Santini, Stefania, 2016. "Dynamic building energy performance analysis: A new adaptive control strategy for stringent thermohygrometric indoor air requirements," Applied Energy, Elsevier, vol. 163(C), pages 361-386.
  31. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
  32. Evola, G. & Marletta, L., 2015. "The Solar Response Factor to calculate the cooling load induced by solar gains," Applied Energy, Elsevier, vol. 160(C), pages 431-441.
  33. Görtz, J. & Jürgensen, J. & Stolz, D. & Wieprecht, S. & Terheiden, K., 2022. "Energy load prediction on structures and buildings-Effect of numerical model complexity on simulation of heat fluxes across the structure/environment interface," Applied Energy, Elsevier, vol. 326(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.