IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v67y2004i2p77-88.html
   My bibliography  Save this item

Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
  2. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
  3. Hou, Xianqing & Li, Rong & He, Wenshou & Ma, Kun, 2020. "Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 230(C).
  4. Awais Ali & Tajamul Hussain & Noramon Tantashutikun & Nurda Hussain & Giacomo Cocetta, 2023. "Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
  5. Wang, Zhenhua & Wu, Qiang & Fan, Bihang & Zheng, Xurong & Zhang, Jinzhu & Li, Wenhao & Guo, Li, 2019. "Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield," Agricultural Water Management, Elsevier, vol. 213(C), pages 477-485.
  6. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
  7. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
  8. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
  9. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
  10. Arun Kumar & Kulvir Singh Saini & Hemant Dasila & Rakesh Kumar & Kavita Devi & Yashpal Singh Bisht & Manish Yadav & Shivani Kothiyal & Aaradhana Chilwal & Damini Maithani & Prashant Kaushik, 2023. "Sustainable Intensification of Cropping Systems under Conservation Agriculture Practices: Impact on Yield, Productivity and Profitability of Wheat," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  11. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
  12. He, Xue-Feng & Cao, Huhua & Li, Feng-Min, 2007. "Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 89(3), pages 243-250, May.
  13. Liang, Yin-Li & Wu, Xing & Zhu, Juan-Juan & Zhou, Mao-Juan & Peng, Qiang, 2011. "Response of hot pepper (Capsicum annuum L.) to mulching practices under planted greenhouse condition," Agricultural Water Management, Elsevier, vol. 99(1), pages 111-120.
  14. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2005. "Rural Water Saving Technology Adoption in Northern China: An Analysis of Survey Data," 2005 Annual meeting, July 24-27, Providence, RI 19437, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  15. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  16. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
  17. Irmak, Suat & Kukal, Meetpal S. & Mohammed, Ali T. & Djaman, Koffi, 2019. "Disk-till vs. no-till maize evapotranspiration, microclimate, grain yield, production functions and water productivity," Agricultural Water Management, Elsevier, vol. 216(C), pages 177-195.
  18. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
  19. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
  20. Gerçek, Sinan & Demirkaya, Mustafa & Işik, Doğan, 2017. "Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region," Agricultural Water Management, Elsevier, vol. 180(PA), pages 172-177.
  21. Gerçek, Sinan & Boydak, Erkan & Okant, Mustafa & Dikilitas, Murat, 2009. "Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 96(1), pages 87-92, January.
  22. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).
  23. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
  24. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
  25. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2007. "Water saving technology and saving water in China," Agricultural Water Management, Elsevier, vol. 87(2), pages 139-150, January.
  26. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.