IDEAS home Printed from https://ideas.repec.org/r/cup/etheor/v5y1989i03p354-362_01.html
   My bibliography  Save this item

On the First-Order Autoregressive Process with Infinite Variance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
  2. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
  3. Gaowen Wang, 2017. "Modified Unit Root Tests with Nuisance Parameter Free Asymptotic Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 519-538, June.
  4. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
  5. Nikolaos Kourogenis & Nikitas Pittis, 2008. "Testing for a unit root under errors with just barely infinite variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1066-1087, November.
  6. Phillips, Peter C B & McFarland, James W & McMahon, Patrick C, 1996. "Robust Tests of Forward Exchange Market Efficiency with Empirical Evidence from the 1920s," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 1-22, Jan.-Feb..
  7. Paulo M.M. Rodrigues & Antonio Rubia, 2004. "On The Small Sample Properties Of Dickey Fuller And Maximum Likelihood Unit Root Tests On Discrete-Sampled Short-Term Interest Rates," Working Papers. Serie AD 2004-11, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  8. Phillips, P.C.B., 1990. "Time Series Regression With a Unit Root and Infinite-Variance Errors," Econometric Theory, Cambridge University Press, vol. 6(1), pages 44-62, March.
  9. Pierre Perron & Eduardo Zorita & Iliyan Georgiev & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2017. "Unit Root Tests and Heavy-Tailed Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 733-768, September.
  10. Agnieszka Jach & Piotr Kokoszka, 2004. "Subsampling Unit Root Tests for Heavy-Tailed Observations," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 73-97, March.
  11. Shin, Dong Wan & So, Beong Soo, 1999. "New tests for unit roots in autoregressive processes with possibly infinite variance errors," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 387-397, October.
  12. Massé, Bruno & Viano, Marie-Claude, 1995. "Explicit and exponential bounds for a test on the coefficient of an AR(1) model," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 365-371, December.
  13. Giuseppe Cavaliere & Iliyan Georgiev & A. M. Robert Taylor, 2013. "Wild Bootstrap of the Sample Mean in the Infinite Variance Case," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 204-219, February.
  14. Miller, J. Isaac & Park, Joon Y., 2005. "How They Interact to Generate Persistency in Memory," Working Papers 2005-01, Rice University, Department of Economics.
  15. Vygantas Paulaauskas & Svetlozar Rachev, 2003. "Maximum likelihood estimators in regression models with infinite variance innovations," Statistical Papers, Springer, vol. 44(1), pages 47-65, January.
  16. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
  17. Jonathan B. Hill, 2005. "On Tail Index Estimation for Dependent, Heterogenous Data," Econometrics 0505005, University Library of Munich, Germany, revised 24 Mar 2006.
  18. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
  19. Fatma Ozgu Serttas, 2018. "Infinite-Variance Error Structure in Finance and Economics," International Econometric Review (IER), Econometric Research Association, vol. 10(1), pages 14-23, April.
  20. Arvanitis, Stelios, 2017. "A note on the limit theory of a Dickey–Fuller unit root test with heavy tailed innovations," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 198-204.
  21. Wojciech Charemza & Daniela Hristova & Peter Burridge, 2005. "Is inflation stationary?," Applied Economics, Taylor & Francis Journals, vol. 37(8), pages 901-903.
  22. K. D. Patterson & S. M. Heravi, 2003. "The impact of fat-tailed distributions on some leading unit roots tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 635-667.
  23. Kirman, Alan & Teyssiere, Gilles, 2005. "Testing for bubbles and change-points," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 765-799, April.
  24. Li-Xin Zhang & Xiao-Rong Yang, 2007. "The Limit Distribution of the Bootstrap for the Unit Root Test Statistic when the Residuals are Dependent," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 195-206, February.
  25. Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2024. "Unbounded heteroscedasticity in autoregressive models," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
  26. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
  27. Serttas, Fatma Ozgu, 2010. "Essays on infinite-variance stable errors and robust estimation procedures," ISU General Staff Papers 201001010800002742, Iowa State University, Department of Economics.
  28. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.
  29. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
  30. Datta, Somnath, 1995. "Limit theory and bootstrap for explosive and partially explosive autoregression," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 285-304, June.
  31. Horváth, Lajos & Kokoszka, Piotr, 2003. "A bootstrap approximation to a unit root test statistic for heavy-tailed observations," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 163-173, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.