IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1503.06704.html
   My bibliography  Save this item

Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
  2. da Gama Batista, João & Massaro, Domenico & Bouchaud, Jean-Philippe & Challet, Damien & Hommes, Cars, 2017. "Do investors trade too much? A laboratory experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 140(C), pages 18-34.
  3. Cretarola, Alessandra & Figà-Talamanca, Gianna, 2020. "Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics," Economics Letters, Elsevier, vol. 191(C).
  4. Rodolfo Angelo Magtanggol Iii De Guzman & Mike K. P. So, 2018. "Empirical Analysis Of Bitcoin Prices Using Threshold Time Series Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 1-24, December.
  5. Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
  6. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
  7. M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
  8. Aslanidis, Nektarios & Fernández Bariviera, Aurelio & Savva, Christos S., 2020. "Weekly dynamic conditional correlations among cryptocurrencies and traditional assets," Working Papers 2072/417680, Universitat Rovira i Virgili, Department of Economics.
  9. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
  10. Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
  11. Blix Grimaldi, Marianna & Crosta, Alberto & Zhang, Dong, 2021. "The Liquidity of the Government Bond Market – What Impact Does Quantitative Easing Have? Evidence from Sweden," Working Paper Series 402, Sveriges Riksbank (Central Bank of Sweden).
  12. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
  13. Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 87-110.
  14. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
  15. Steven Haryanto & Athor Subroto & Maria Ulpah, 2020. "Disposition effect and herding behavior in the cryptocurrency market," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 115-132, March.
  16. Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Papers 1903.06033, arXiv.org, revised Apr 2019.
  17. Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2020. "Market attention and Bitcoin price modeling: theory, estimation and option pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 187-228, June.
  18. Davide Provenzano & Rodolfo Baggio, 2021. "Complexity traits and synchrony of cryptocurrencies price dynamics," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 941-955, December.
  19. Matthias Schnaubelt & Jonas Rende & Christopher Krauss, 2019. "Testing Stylized Facts of Bitcoin Limit Order Books," JRFM, MDPI, vol. 12(1), pages 1-30, February.
  20. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
  21. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
  22. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  23. Irena Barjav{s}i'c & Nino Antulov-Fantulin, 2020. "Time-varying volatility in Bitcoin market and information flow at minute-level frequency," Papers 2004.00550, arXiv.org, revised Jan 2021.
  24. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
  25. Alessandra Cretarola & Gianna Figà-Talamanca, 2021. "Detecting bubbles in Bitcoin price dynamics via market exuberance," Annals of Operations Research, Springer, vol. 299(1), pages 459-479, April.
  26. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
  27. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
  28. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.