My bibliography
Save this item
Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019.
"On the robustness of the principal volatility components,"
Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
- Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
- Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
- Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
- R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
- Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
- Harry-Paul Vander Elst & David Veredas, 2014.
"Disentangled Jump-Robust Realized Covariances and Correlations with Non-Synchronous Prices,"
Working Papers ECARES
ECARES 2014-35, ULB -- Universite Libre de Bruxelles.
- Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Li, Y-N. & Chen, J. & Linton, O., 2021. "Estimation of Common Factors for Microstructure Noise and Efficient Price in a High-frequency Dual Factor Model," Cambridge Working Papers in Economics 2150, Faculty of Economics, University of Cambridge.
- Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
- Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
- Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
- Arnab Chakrabarti & Rituparna Sen, 2023. "Copula Estimation for Nonsynchronous Financial Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 116-149, May.
- Fengler, Matthias R. & Gisler, Katja I.M., 2015.
"A variance spillover analysis without covariances: What do we miss?,"
Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
- Fengler, Matthias R. & Gisler, Katja I. M., 2014. "A variance spillover analysis without covariances: what do we miss?," Economics Working Paper Series 1409, University of St. Gallen, School of Economics and Political Science.
- Xin-Bing Kong, 2017. "On the number of common factors with high-frequency data," Biometrika, Biometrika Trust, vol. 104(2), pages 397-410.
- Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022.
"Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data,"
Working Papers
202212, University of Liverpool, Department of Economics.
- Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2023. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Papers 2307.01348, arXiv.org.
- Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
- Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
- Lian, Yu-Min & Chen, Jun-Home, 2019. "Portfolio selection in a multi-asset, incomplete-market economy," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 228-238.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
- Hui ‘Fox’ Ling & Christian Franzen, 2017. "Online learning of time-varying stochastic factor structure by variational sequential Bayesian factor analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1277-1304, August.
- Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
- Lam, Clifford & Feng, Phoenix & Hu, Charlie, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," LSE Research Online Documents on Economics 69812, London School of Economics and Political Science, LSE Library.
- Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
- Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
- Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
- Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022.
"Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency,"
Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
- Alberto Ohashi & Alexandre B Simas, 2015. "Principal Components Analysis for Semimartingales and Stochastic PDE," Papers 1503.05909, arXiv.org, revised Mar 2016.
- repec:cte:wsrepe:es142416 is not listed on IDEAS
- Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017.
"Positive semidefinite integrated covariance estimation, factorizations and asynchronicity,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, Department of Economics and Business Economics, Aarhus University.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
- Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2014.
"Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice,"
CREATES Research Papers
2014-42, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Anders B. Kock & Marcelo C. Medeiros, 2014. "Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice," Tinbergen Institute Discussion Papers 14-147/III, Tinbergen Institute.
- Xinyu Song, 2019. "Large Volatility Matrix Prediction with High-Frequency Data," Papers 1907.01196, arXiv.org, revised Sep 2019.
- Kong, Xin-Bing & Liu, Cheng, 2018. "Testing against constant factor loading matrix with large panel high-frequency data," Journal of Econometrics, Elsevier, vol. 204(2), pages 301-319.
- Dong Hwan Oh & Andrew J. Patton, 2017.
"Modeling Dependence in High Dimensions With Factor Copulas,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
- Dong Hwan Oh & Andrew J. Patton, 2015. "Modelling Dependence in High Dimensions with Factor Copulas," Finance and Economics Discussion Series 2015-51, Board of Governors of the Federal Reserve System (U.S.).
- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
- H. Peter Boswijk & Yang Zu, 2022.
"Adaptive Testing for Cointegration With Nonstationary Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 744-755, April.
- Peter Boswijk & Yang Zu, 2019. "Adaptive Testing for Cointegration with Nonstationary Volatility," Tinbergen Institute Discussion Papers 19-043/III, Tinbergen Institute.
- Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
- Clifford Lam & Phoenix Feng & Charlie Hu, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," Biometrika, Biometrika Trust, vol. 104(2), pages 481-488.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Donggyu Kim & Minseog Oh, 2024.
"Dynamic Realized Minimum Variance Portfolio Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
- Donggyu Kim & Minseog Oh, 2023. "Dynamic Realized Minimum Variance Portfolio Models," Papers 2310.13511, arXiv.org.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022.
"Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data,"
Cambridge Working Papers in Economics
2218, Faculty of Economics, University of Cambridge.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Janeway Institute Working Papers 2208, Faculty of Economics, University of Cambridge.
- Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
- Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
- R. P. Brito & H. Sebastião & P. Godinho, 2017.
"Portfolio choice with high frequency data: CRRA preferences and the liquidity effect,"
Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
- Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect," GEMF Working Papers 2016-13, GEMF, Faculty of Economics, University of Coimbra.
- Sun, Edward W. & Chen, Yi-Ting & Yu, Min-Teh, 2015. "Generalized optimal wavelet decomposing algorithm for big financial data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 194-214.
- Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023.
"Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
- Mehmet Caner & Marcelo Medeiros & Gabriel Vasconcelos, 2020. "Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models," Papers 2002.01800, arXiv.org, revised Feb 2022.
- Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
- Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013.
"The leverage effect puzzle: Disentangling sources of bias at high frequency,"
Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
- Yacine Ait-Sahalia & Jianqing Fan & Yingying Li, 2011. "The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency," NBER Working Papers 17592, National Bureau of Economic Research, Inc.
- Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yutong Chen & Paul Bilokon & Conan Hales & Laura Kerr, 2023. "Real-time VaR Calculations for Crypto Derivatives in kdb+/q," Papers 2309.06393, arXiv.org.
- Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect," GEMF Working Papers 2016-13, GEMF, Faculty of Economics, University of Coimbra.
- Kirill Dragun & Kris Boudt & Orimar Sauri & Steven Vanduffel, 2021. "Beta-Adjusted Covariance Estimation," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1010, Ghent University, Faculty of Economics and Business Administration.
- Seema Narayan, 2019. "The Influence of Domestic and Foreign Shocks on Portfolio Diversification Gains and the Associated Risks," JRFM, MDPI, vol. 12(4), pages 1-26, October.
- Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
- Michael Ho & Jack Xin, 2016. "Sparse Kalman Filtering Approaches to Covariance Estimation from High Frequency Data in the Presence of Jumps," Papers 1602.02185, arXiv.org, revised Apr 2016.