My bibliography
Save this item
Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haobo Chen & Shangyu Liu & Yaoqiu Kuang & Jie Shu & Zetao Ma, 2023. "Decomposition Analysis of Regional Electricity Consumption Drivers Considering Carbon Emission Constraints: A Comparison of Guangdong and Yunnan Provinces in China," Energies, MDPI, vol. 16(24), pages 1-25, December.
- Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
- Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
- Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
- Chen, Xiaodong & Guo, Anda & Miao, Zhuang & Zhu, Pengyu, 2024. "Assessing the performance of the transport sector within the global supply chain context: Decomposition of energy and environmental productivity," Applied Energy, Elsevier, vol. 358(C).
- Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
- Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
- Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
- Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
- H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
- Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
- Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
- Morakinyo O. Adetutu & Kayode A. Odusany & Thomas G. Weyman-Jones, 2020. "Carbon Tax and Energy Intensity: Assessing the Channels of Impact using UK Microdata," The Energy Journal, , vol. 41(2), pages 143-166, March.
- Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
- Atit Tippichai, 2022. "Decomposition Analysis of Energy Consumption in Thailand, 1990-2020," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 10-14, July.
- Xu, Chong & Qin, Zengqiang & Chen, Jiandong & Zhang, Jiangxue, 2024. "Heterogeneous technology-induced global CO2 emission reduction and emission forecasting since the Kyoto era," Applied Energy, Elsevier, vol. 371(C).
- Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
- Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
- Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
- Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
- Feng Dong & Xinqi Gao & Jingyun Li & Yuanqing Zhang & Yajie Liu, 2018. "Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches," IJERPH, MDPI, vol. 15(12), pages 1-28, December.
- Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
- Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
- Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
- Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
- Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.