Author
Abstract
Markov Models are of outstanding importance in the performance and reliability evaluation of computer systems and communication networks. In this paper we aim at contributing to the field of Markovian Process Algebras (MPAs). An MPA model is (or may be) the composition of several concurrent sub-components (each of which describes an underlying Markov chain) which may interact with each other through synchronisation. On the one hand the existence of sub-components implies the possibility of the state space explosion problem, i.e. the size of the state space of the Markov chain underlying the composite component grows exponentially in the number of sub-components. On the other hand the interaction of sub-components in general negates the property of independence of their underlying Markov chains, and hence forbids a product-form solution for steady state probabilities. Our target quantities are single steady state probabilities of the Markov chain underlying the composite component. We consider composite components which possess only global synchronisations, i.e. every sub-component is involved in every synchronisation. For this class of MPA models the behaviour of the composite component between two successive synchronisations can be described by the joint process of several absorbing Markov chains. First, a new result on cumulative measures of absorbing joint Markov chains is presented. We compute the mean time to absorption and the mean time the joint Markov chain spends in a certain set before absorption. Our computations do not operate on the state space of the joint Markov chain, and hence the problem of state space explosion is avoided. The computational effort of our method rather depends on convergence properties of the joint Markov chain. Afterwards, this result is applied to compute steady state probabilities for a class of composite components specified as PEPA models which are popular ambassadors of MPAs. It is easily understood that these results carry over from PEPA to other MPA variants.
Suggested Citation
Brenner, Freimut, 2007.
"Cumulative measures of absorbing joint Markov chains and an application to Markovian process algebras,"
ICB Research Reports
12, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
Handle:
RePEc:zbw:udeicb:12
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:udeicb:12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.