IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-042.html
   My bibliography  Save this paper

Generated covariates in nonparametric estimation: A short review

Author

Listed:
  • Mammen, Enno
  • Rothe, Christoph
  • Schienle, Melanie

Abstract

In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function.

Suggested Citation

  • Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2012. "Generated covariates in nonparametric estimation: A short review," SFB 649 Discussion Papers 2012-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-042
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79567/1/718282434.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
    2. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2011. "Semiparametric estimation with generated covariates," SFB 649 Discussion Papers 2011-064, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    4. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    5. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    6. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    7. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    8. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2010. "Nonparametric regression with nonparametrically generated covariates," SFB 649 Discussion Papers 2010-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2012-042 is not listed on IDEAS
    2. Vanhems, Anne & Van Keilegom, Ingrid, 2019. "Estimation Of A Semiparametric Transformation Model In The Presence Of Endogeneity," Econometric Theory, Cambridge University Press, vol. 35(1), pages 73-110, February.
    3. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    5. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    6. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    7. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    8. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    9. Vanhems, Anne & Van Keilegom, Ingrid, 2011. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2011011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Van Keilegom, Ingrid & Vanhems, Anne, 2011. "Semiparametric transformation model with endogeneity: a control function approach," TSE Working Papers 11-243, Toulouse School of Economics (TSE).
    11. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    12. Louise Laage, 2020. "A Correlated Random Coefficient Panel Model with Time-Varying Endogeneity," Papers 2003.09367, arXiv.org, revised Nov 2022.
    13. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.
    14. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    15. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    16. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome Conditioned Treatment Effects," Boston College Working Papers in Economics 840, Boston College Department of Economics.
    19. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    20. Gutknecht, Daniel, 2012. "Do Reservation Wages Decline Monotonically? A Novel Statistical Test," Economic Research Papers 270635, University of Warwick - Department of Economics.
    21. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.

    More about this item

    Keywords

    Nonparametric estimation; generated covariates;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.