IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2007-067.html
   My bibliography  Save this paper

A stochastic volatility libor model and its robust calibration

Author

Listed:
  • Belomestny, Denis
  • Matthew, Stanley
  • Schoenmakers, John G. M.

Abstract

In this paper we propose a Libor model with a high-dimensional specially structured system of driving CIR volatility processes. A stable calibration prodecure which takes into account a given local correlation structure is presented. The calibration algorithm is FFT based, so fast and easy to implement.

Suggested Citation

  • Belomestny, Denis & Matthew, Stanley & Schoenmakers, John G. M., 2007. "A stochastic volatility libor model and its robust calibration," SFB 649 Discussion Papers 2007-067, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2007-067
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25239/1/558648975.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    7. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    8. Belomestny, Denis & Schoenmakers, John G. M., 2006. "A jump-diffusion Libor model and its robust calibration," SFB 649 Discussion Papers 2006-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Denis Belomestny & John Schoenmakers, 2010. "A jump-diffusion Libor model and its robust calibration," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
    10. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2007-067 is not listed on IDEAS
    2. Belomestny Denis & Mathew Stanley & Schoenmakers John, 2009. "Multiple stochastic volatility extension of the Libor market model and its implementation," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 285-310, January.
    3. A. M. Ferreiro & J. A. Garc'ia & J. G. L'opez-Salas & C. V'azquez, 2024. "SABR/LIBOR market models: pricing and calibration for some interest rate derivatives," Papers 2408.01470, arXiv.org.
    4. Denis Belomestny & John Schoenmakers, 2010. "A jump-diffusion Libor model and its robust calibration," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
    5. Marcel Ladkau & John G. M. Schoenmakers & Jianing Zhang, 2012. "Libor model with expiry-wise stochastic volatility and displacement," Papers 1204.5698, arXiv.org.
    6. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    7. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    8. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    9. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    11. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    12. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    13. Lixin Wu & Fan Zhang, 2008. "Fast swaption pricing under the market model with a square-root volatility process," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 163-180.
    14. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    15. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    16. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2005. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton with Jumps," Research Paper Series 167, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Antonis Papapantoleon, 2009. "Old and new approaches to LIBOR modeling," Papers 0910.4941, arXiv.org, revised Apr 2010.
    18. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    20. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    21. Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Keywords

    Libor modelling; stochastic volatility; CIR processes; calibration;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2007-067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.