Author
Listed:
- Schiffner, Julia
- Weihs, Claus
Abstract
This paper is based on an article of Pumplün et al. (2005a) that investigates the use of Design of Experiments in data bases in order to select variables that are relevant for classification in situations where a sufficient number of measurements of the explanatory variables is available, but measuring the class label is hard, e. g. expensive or time-consuming. Pumplün et al. searched for D-optimal designs in existing data sets by means of a genetic algorithm and assessed variable importance based on the found plans. If the design matrix is standardized these D-optimal plans are almost orthogonal and the explanatory variables are nearly uncorrelated. Thus Pumplün et al. expected that their importance for discrimination can be judged independently of each other. In a simulation study Pumplün et al. applied this approach in combination with five classification methods to eight data sets and the obtained error rates were compared with those resulting from variable selection on the basis of the complete data sets. Based on the D-optimal plans in some cases considerably lower error rates were achieved. Although Pumplün et al. (2005a) obtained some promising results, it was not clear for different reasons if D-optimality actually is beneficial for variable selection. For example, D-efficiency and orthogonality of the resulting plans were not investigated and a comparison with variable selection based on random samples of observations of the same size as the D-optimal plans was missing. In this paper we extend the simulation study of Pumplün et al. (2005a) in order to verify their results and as basis for further research in this field. Moreover, in Pumplün et al. D-optimal plans are only used for data preprocessing, that is variable selection. The classification models are estimated on the whole data set in order to assess the effects of D-optimality on variable selection separately. Since the number of measurements of the class label in fact is limited one would normally employ the same observations that were used for variable selection for learning, too. For this reason in our simulation study the appropriateness of D-optimal plans for training classification methods is additionally investigated. It turned out that in general in terms of the error rate there is no difference between variable selection on the basis of D-optimal plans and variable selection on random samples. However, for training of linear classification methods D-optimal plans seem to be beneficial.
Suggested Citation
Schiffner, Julia & Weihs, Claus, 2009.
"D-optimal plans for variable selection in data bases,"
Technical Reports
2009,14, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
Handle:
RePEc:zbw:sfb475:200914
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200914. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.