IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200725.html
   My bibliography  Save this paper

GMM estimation of the autoregressiveparameter in a spatial autoregressive errormodel using regression residuals

Author

Listed:
  • Arnold, Matthias

Abstract

This paper suggests an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are di.erent from observable regression residuals. Although this di.erence decreases in large samples, it is important in small samples. Monte Carlo simu­lations show that the bias can be reduced by 65 - 80% compared to a GMM estimator that neglects the difference between disturbances and residuals. The mean squared error is smaller, too.

Suggested Citation

  • Arnold, Matthias, 2007. "GMM estimation of the autoregressiveparameter in a spatial autoregressive errormodel using regression residuals," Technical Reports 2007,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200725
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25008/1/55048101X.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    3. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    4. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    5. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    6. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    7. Patrik Tingvall, 2004. "The dynamics of European industrial structure," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 140(4), pages 665-687, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnold, Matthias & Wied, Dominik, 2010. "Improved GMM estimation of the spatial autoregressive error model," Economics Letters, Elsevier, vol. 108(1), pages 65-68, July.
    2. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.
    3. Lambert, Dayton M. & Malzer, Gary L. & Lowenberg-DeBoer, James, 2004. "General Moment And Quasi-Maximum Likelihood Estimation Of A Spatially Autocorrelated System Of Equations: An Empirical Example Using On-Farm Precision Agriculture Data," Staff Papers 28667, Purdue University, Department of Agricultural Economics.
    4. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    5. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    6. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    7. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    8. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    9. Bao Hoang Nguyen & Zhichao Wang & Valentin Zelenyuk, 2023. "Efficiency of Queensland Public Hospitals via Spatial Panel Stochastic Frontier Models," CEPA Working Papers Series WP102023, School of Economics, University of Queensland, Australia.
    10. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    11. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    12. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    13. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    14. Cotteleer, Geerte & van Kooten, G. Cornelis, 2012. "Expert opinion versus actual transaction evidence in the valuation of non-market amenities," Economic Modelling, Elsevier, vol. 29(1), pages 32-40.
    15. Valerien O. Pede & Francisco J. Areal & Alphonse Singbo & Justin McKinley & Kei Kajisa, 2018. "Spatial dependency and technical efficiency: an application of a Bayesian stochastic frontier model to irrigated and rainfed rice farmers in Bohol, Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 49(3), pages 301-312, May.
    16. Giovanni Millo, 2022. "The generalized spatial random effects model in R," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.
    17. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2016. "The Spatial Efficiency Multiplier and Random Effects in Spatial Stochastic Frontier Models," Working Papers 16-002, Rice University, Department of Economics.
    18. NGELEZA, Guyslain K. & FLORAX, Raymond J.G.M. & MASTERS, William A, 2011. "Spatial Inequality: Overcoming Neighborhood Effects In Africa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 11(2).
    19. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    20. Harald Badinger & Peter Egger, 2008. "GM Estimation of Higher-Order Spatial Autoregressive Processes in Cross-Section Models with Heteroskedastic Disturbances," CESifo Working Paper Series 2356, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.