IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200535.html
   My bibliography  Save this paper

A note on uniform consistency of monotone function estimators

Author

Listed:
  • Neumeyer, Natalie

Abstract

Recently, Dette, Neumeyer and Pilz (2005a) proposed a new monotone estimator for strictly increasing nonparametric regression functions and proved asymptotic normality. We explain two modifications of their method that can be used to obtain monotone versions of any nonparametric function estimators, for instance estimators of densities, variance functions or hazard rates. The method is appealing to practitioners because they can use their favorite method of function estimation (kernel smoothing, wavelets, orthogonal series,. . . ) and obtain a monotone estimator that inherits desirable properties of the original estimator. In particular, we show that both monotone estimators share the same rates of uniform convergence (almost sure or in probability) as the original estimator.

Suggested Citation

  • Neumeyer, Natalie, 2005. "A note on uniform consistency of monotone function estimators," Technical Reports 2005,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200535
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22625/1/tr35-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Groeneboom & H. P. Lopuhaa, 1993. "Isotonic estimators of monotone densities and distribution functions: basic facts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 47(3), pages 175-183, September.
    2. Dette, Holger & Birke, Melanie, 2005. "A note on estimating a monotone regression by combining kernel and density estimates," Technical Reports 2005,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. de Jong, Robert M., 2002. "A note on "Convergence rates and asymptotic normality for series estimators": uniform convergence rates," Journal of Econometrics, Elsevier, vol. 111(1), pages 1-9, November.
    4. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    5. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    6. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    7. Dette, Holger & Pilz, Kay F., 2004. "On the estimation of a monotone conditional variance in nonparametric regression," Technical Reports 2004,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Polonik, W., 1995. "Density Estimation under Qualitative Assumptions in Higher Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 55(1), pages 61-81, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neumeyer, Natalie, 2007. "A note on uniform consistency of monotone function estimators," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 693-703, April.
    2. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    3. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    4. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    5. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    6. Lee, Jungyoon & Robinson, Peter M., 2013. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 58188, London School of Economics and Political Science, LSE Library.
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    8. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression," Cowles Foundation Discussion Papers 1923, Cowles Foundation for Research in Economics, Yale University.
    9. Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," CeMMAP working papers 46/14, Institute for Fiscal Studies.
    10. Xiaohong Chen & Timothy M. Christensen, 2013. "Optimal uniform convergence rates for sieve nonparametric instrumental variables regression," CeMMAP working papers 56/13, Institute for Fiscal Studies.
    11. repec:cep:stiecm:/2013/570 is not listed on IDEAS
    12. Dimitriou, Dimitrios & Simos, Theodore, 2011. "The relationship between stock returns and volatility in the seventeen largest international stock markets: A semi-parametric approach," MPRA Paper 37528, University Library of Munich, Germany.
    13. Jungyoon Lee & Peter M Robinson, 2013. "Series Estimation under Cross-sectional Dependence," STICERD - Econometrics Paper Series 570, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    15. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    17. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    18. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    19. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    20. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    21. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.