IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200514.html
   My bibliography  Save this paper

Cluster Analysis : A Comparison of Different Similarity Measures for SNP Data

Author

Listed:
  • Ickstadt, Katja
  • Selinski, Silvia
  • Müller, Tina

Abstract

The issue of suitable similarity measures for a particular kind of genetic data - so called SNP data - arises, e.g., from the GENICA (The Interdisciplinary Study Group on Gene Environmental Interactions and Breast Cancer in Germany) case-control study of sporadic breast cancer. The GENICA study aims to investigate the influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous risk factors. It is very unlikely that there exists one main effect, say only one polymorphism, being responsible for such a complex disease as sporadic breast cancer as the role of a single gene within the carcinogenic process is limited (Garte, 2001). Nevertheless, it is assumed that a number of interacting SNPs in combination with certain environmental risk factors increase the individual susceptibility. The search for SNP patterns in the present data set may be performed by a variety of clustering and classification approaches. Here we consider the problem of adequate similarity measures for variables or subjects as an indispensable basis for a further cluster analysis. The term ?similarity? is still vague for SNP data. A main problem arises by the general structure of such data sets: the proportion of hetero- or homozygous SNPs is rather small compared with the homozygous reference sequence. Thus, the relevant information of combinations of genetic alterations is often masked by a huge amount of common occurrences of homozygous reference types. Therefore, we examine different similarity measures, conventional ones as well as new coefficients which we created especially for SNP data. Furthermore, we compare the resulting partitions with each other adapting the clustering of clustering methods of Rand (1971) for different similarity measures.

Suggested Citation

  • Ickstadt, Katja & Selinski, Silvia & Müller, Tina, 2005. "Cluster Analysis : A Comparison of Different Similarity Measures for SNP Data," Technical Reports 2005,14, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200514
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22605/1/tr14-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ickstadt, Katja & Selinski, Silvia, 2005. "Similarity Measures for Clustering SNP Data," Technical Reports 2005,27, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ickstadt, Katja & Selinski, Silvia, 2005. "Similarity Measures for Clustering SNP Data," Technical Reports 2005,27, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Selinski, Silvia, 2006. "Similarity Measures for Clustering SNP and Epidemiological Data," Technical Reports 2006,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Schwender, Holger, 2007. "A note on the simultaneous computation of thousands of Pearson's X2-Statistics," Technical Reports 2007,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Schwender, Holger & Ickstadt, Katja, 2008. "Imputing missing genotypes with weighted k nearest neighbors," Technical Reports 2008,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selinski, Silvia, 2006. "Similarity Measures for Clustering SNP and Epidemiological Data," Technical Reports 2006,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.