IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200455.html
   My bibliography  Save this paper

Learning feature extraction for learning from audio data

Author

Listed:
  • Mierswa, Ingo
  • Morik, Katharina

Abstract

Today, large collections of digital music plays are available. These audio data are time series which need to be indexed and classified for diverse applications. Indexing and classification differs from time series analysis, in that it generalises several series, whereas time series analysis handles just one series a time. The classification of audio data cannot use similarity measures defined on the raw data, e.g. using time warping, or generalise the shape of the series. The appropriate similarity or generalisation for audio data requires feature extraction before classification can successfully be applied to the transformed data. Methods for extracting features that allow to classify audio data have been developed. However, the development of appropriate feature extraction methods is a tedious effort, particularly because every new classification task requires to tailor the feature set anew. Hence, we consider the construction of feature extraction methods from elementary operators itself a first learning step. We use a genetic programming approach. After the feature extraction, a second process learns a classifier from the transformed data. The practical use of the methods is shown by two types of experiments: classification of genres and classification according to user preferences

Suggested Citation

  • Mierswa, Ingo & Morik, Katharina, 2004. "Learning feature extraction for learning from audio data," Technical Reports 2004,55, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200455
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22568/1/tr55-04.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.