IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200053.html
   My bibliography  Save this paper

Comparison between the regression depth method and the support vector machine to approximate the minimum number of misclassifications

Author

Listed:
  • Christmann, Andreas
  • Fischer, Paul
  • Joachims, Thorsten

Abstract

The minimum number of misclassifications achievable with affine hyper_ planes on a given set of labeled points is a key quantity in both statistics and computational learning theory. However, determining this quantity exactly is essentially NP_hard_ cf_ Höfgen, Simon and van Horn (1995.) Hence, there is a need to find reasonable approximation procedures. This paper compares three approaches to approximating the minimum number of misclassifications achievable with afine hyperplanes. The first approach is based on the regression depth method of Rousseeuw and Hubert (1999) in linear regression models. We compare the results of the regression depth method with the support vector machine approach proposed by Vapnik (1998) and a heuristic search algorithm.

Suggested Citation

  • Christmann, Andreas & Fischer, Paul & Joachims, Thorsten, 2000. "Comparison between the regression depth method and the support vector machine to approximate the minimum number of misclassifications," Technical Reports 2000,53, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200053
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77141/2/2000-53.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.