IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/199942.html
   My bibliography  Save this paper

A simulation study on nonlinear principal component analysis

Author

Listed:
  • Voß, Brigitta

Abstract

In statistical practice multicollinearity of predictor variables is rather the rule than the exception and appropriate models are needed to avoid instability of predictions. Feature extraction methods reflect the idea that latent variables not measurable directly are underlying the original data. They try to reduce the dimension of the data by constructing new independent variables which keep as much information as possible from the original measurements. A common feature extraction method is Principal Component Analysis (PCA), which in its classical form is restricted to linear relationships among predictor variables. This paper is concerned with nonlinear principal component analysis (NLPCA) as introduced by Kramer (1991) who modelled his approach with help of artificial neural networks. By means of first simulation studies data derived from semicircles and circles are investigated with respect to their ability to be described by nonlinear principal components among the predictors.

Suggested Citation

  • Voß, Brigitta, 1999. "A simulation study on nonlinear principal component analysis," Technical Reports 1999,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:199942
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77363/2/1999-42.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:199942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.