IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/199822.html
   My bibliography  Save this paper

Robust sliced inverse regression procedures

Author

Listed:
  • Gather, Ursula
  • Hilker, Torsten
  • Becker, Claudia

Abstract

Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data. Therefore a generalized estimation procedure which allows for robustness properties, especially for a high breakdown point, is proposed.

Suggested Citation

  • Gather, Ursula & Hilker, Torsten & Becker, Claudia, 1998. "Robust sliced inverse regression procedures," Technical Reports 1998,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:199822
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77188/2/1998-22.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    2. Zhou, Jingke & Zhu, Lixing, 2016. "Principal minimax support vector machine for sufficient dimension reduction with contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 33-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:199822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.