Author
Listed:
- Hernandez-Molinar, Raul
- Lefante, John
Abstract
In some applications, the population characteristics of main interest can be found in the tails of the distribution function. The study of risk of extreme events will lead to the use of probability distributions and the scenarios that correspond to the tail of these distributions. Considering two approaches: parametric and nonparametric, the research emphasizes the assessment of distribution tails, assuming that underlying distributions are heavy tailed. Two heavy tailed distributions are considered: Generalized Pareto and Lognormal. The Maximum likelihood estimation method, using the complete sample, and using only the upper order statistics provide estimators of the parameters. Measures of Bias and Mean Squared Error of the estimators of the parameters, and the Conditional Mean Exceedence Functions of the distributions, are generated. The methodology for estimating population parameters, has potential applications in financial markets, quality control, assurance portfolios, monitoring of residual discharges, medical applications, design of environmental policies, or calibration and adjustment of processes and equipment. The main idea is to present, and analyze the methods used for the estimation, and some convergence problems when these two distribution functions are used in generating scenarios.
Suggested Citation
Hernandez-Molinar, Raul & Lefante, John, 2003.
"Some Convergence Problems On Heavy Tail Estimation Using Upper Order Statistics For Generalized Pareto and Lognormal Distributions,"
SFB 373 Discussion Papers
2003,30, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Handle:
RePEc:zbw:sfb373:200330
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.