IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200181.html
   My bibliography  Save this paper

The costs of not knowing the radius

Author

Listed:
  • Rieder, Helmut
  • Kohl, Matthias
  • Ruckdeschel, Peter

Abstract

We determine the increase of the maximum risk over the minimax risk in the case that the optimally robust estimator for the false radius is used. This is done by numerical solution of the implicit equations which determine optimal robustness, for location, scale, and linear regression models, and by evaluation of maximum asymptotic variance and mean square error over fixed size symmetric contamination and infinitesimal asymmetric neighborhoods, respectively. The maximum increase of the relative risk is minimized in the case that the radius is known only to belong to some interval [pr, l'/p] The effect of increasing parameter dimension is studied for these models. The minimax increase of relative risk in ease p = 0, compared with that of the most robust procedure, is 18.1% vs. 57.1% and 50.5% vs. 172.1% for one-dimensional location and scale, respectively, and less than 1/3 in other typical contamination models. In most of our models, the radius needs to be specified only up to a factor p:; ~, in order to keep the increase of relative risk below 12.5%, provided and the radius minimax robust estimator is employed. The least favorable radii leading to the radius minimax estimators turn out small: 5% - 6% contamination, at sample size 100.

Suggested Citation

  • Rieder, Helmut & Kohl, Matthias & Ruckdeschel, Peter, 2001. "The costs of not knowing the radius," SFB 373 Discussion Papers 2001,81, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200181
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62707/1/725917431.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruckdeschel Peter & Rieder Helmut, 2004. "Optimal influence curves for general loss functions," Statistics & Risk Modeling, De Gruyter, vol. 22(3), pages 201-223, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.