IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200178.html
   My bibliography  Save this paper

Space distortion and monotone admissibility in agglomerative clustering

Author

Listed:
  • Takeuchi, Akinobu
  • Yadohisa, Hiroshi
  • Inada, Koichi

Abstract

This paper discusses the admissibility of agglomerative hierarchical clustering algorithms with respect to space distortion and monotonicity, as defined by Yadohisa et al. and Batagelj, respectively. Several admissibilities and their properties are given for selecting a clustering algorithm. Necessary and sufficient conditions for an updating formula, as introduced by Lance and Williams, are provided for the proposed admissibility criteria. A detailed explanation of the admissibility of eight popular algorithms is also given.

Suggested Citation

  • Takeuchi, Akinobu & Yadohisa, Hiroshi & Inada, Koichi, 2001. "Space distortion and monotone admissibility in agglomerative clustering," SFB 373 Discussion Papers 2001,78, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200178
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62673/1/725720808.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Batagelj, 1981. "Note on ultrametric hierarchical clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 46(3), pages 351-352, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Day & Herbert Edelsbrunner, 1985. "Investigation of proportional link linkage clustering methods," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 239-254, December.
    2. Anuška Ferligoj & Vladimir Batagelj, 1982. "Clustering with relational constraint," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 413-426, December.
    3. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    4. Nathanaël Randriamihamison & Nathalie Vialaneix & Pierre Neuvial, 2021. "Applicability and Interpretability of Ward’s Hierarchical Agglomerative Clustering With or Without Contiguity Constraints," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 363-389, July.
    5. Akinori Okada & Hans-Hermann Bock & F. Murtagh & F. Rohlf & Wei-Chien Chang & Shizuhiko Nishisato & Robert Sokal & Carolyn Anderson & Frank Critchley & Frank Critchley & Robert Golden, 1989. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 121-161, December.
    6. Werner Vach & Paul Degens, 1991. "A new approach to isotonic agglomerative hierarchical clustering," Journal of Classification, Springer;The Classification Society, vol. 8(2), pages 217-237, December.
    7. William Day & Herbert Edelsbrunner, 1984. "Efficient algorithms for agglomerative hierarchical clustering methods," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 7-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.