IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/2001103.html
   My bibliography  Save this paper

Nonparametric kernel estimation of evolutionary autoregressive processes

Author

Listed:
  • Kim, Woocheol

Abstract

This paper develops a new econometric tool for evolutionary autoregressive models where the AR coefficients change smoothly over time. To estimate the unknown functional form of time-varying coefficients, we propose a mdified local linear smoother. The asymptotic normality and variance of the new estimator are derived by extending Phillips and Solo device to the case of evolutionary linear processes. As an application for statistical inference, we show how Wald tests for stationarity and misspecification could be formulated based on finite-dimensional distributions of the kernel estimates. We also examine the finite sample performance of the method via numerical simulations. As an empirical illustration, the method is applied to the real data of US stock returns.

Suggested Citation

  • Kim, Woocheol, 2001. "Nonparametric kernel estimation of evolutionary autoregressive processes," SFB 373 Discussion Papers 2001,103, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:2001103
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62720/1/725989572.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    2. Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2013. "Nonparametric Estimation and Parametric Calibration of Time-Varying Coefficient Realized Volatility Models," Monash Econometrics and Business Statistics Working Papers 21/13, Monash University, Department of Econometrics and Business Statistics.
    3. Cai, Zongwu, 2003. "Trending Time-Varying Coefficient Models With Serially Correlated Errors," SFB 373 Discussion Papers 2003,7, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:2001103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.