IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199838.html
   My bibliography  Save this paper

Image denoising: Pointwise adaptive approach

Author

Listed:
  • Polzehl, Jörg
  • Spokojnyj, Vladimir G.

Abstract

The paper is concerned with the problem of image denoising for the case of grey-scale images. Such images consist of a finite number of regions with smooth boundaries and the image value is assumed piecewise constant within each region. New method of image denoising is proposed which is adaptive (assumption free) to the number of regions and smoothness properties of edges. The method is based on a pointwise image recovering and it relies on an adaptive choice of a smoothing window. It is shown that the attainable quality of estimation depends on the distance from the point of estimation to the closest boundary and on smoothness properties and orientation of this boundary. It is also shown that the proposed method provides a near optimal rate of the edge estimation.

Suggested Citation

  • Polzehl, Jörg & Spokojnyj, Vladimir G., 1998. "Image denoising: Pointwise adaptive approach," SFB 373 Discussion Papers 1998,38, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199838
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/61250/1/721974635.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muller, H. G. & Song, K. S., 1994. "Maximin Estimation of Multidimensional Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 50(2), pages 265-281, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    2. Peihua Qiu, 2009. "Jump-preserving surface reconstruction from noisy data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 715-751, September.
    3. Garlipp, T. & Muller, C.H., 2006. "Detection of linear and circular shapes in image analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1479-1490, December.
    4. Delgado, Miguel A. & Hidalgo, Javier, 2000. "Nonparametric inference on structural breaks," Journal of Econometrics, Elsevier, vol. 96(1), pages 113-144, May.
    5. Bengs, Viktor & Eulert, Matthias & Holzmann, Hajo, 2019. "Asymptotic confidence sets for the jump curve in bivariate regression problems," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 291-312.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.