Author
Abstract
Search for an unknown set A,Card(A) = s, of significant variables of a linear model with random IID discrete binary carriers and finitely supported IID noise is studied. Two statistics T1, Ts, based on maximization of Shannon Information (SI) of the corresponding classes of joint empirical input-output distributions, are proposed inspired by the related study in Csiszar and Körner (1981). The first one compares sequences of values of each variable and of the output separately. The second one explores the relation between the subsets of the (N x t) design matrix corresponding to each subset of variables of given cardinality and the output sequence. Here N is the number of experiments and t is the total number of variables. Both statistics are shown to be asymptotically as efficient as the ML-test for the corresponding classes of joint empirical distributions in the artificial case when ML-test is applicable: if the unknown parameters bλ, λ Є A, of the model and the distribution of errors are known. Our tests do not require this information. Therefore, they are asymptotically uniformly most efficient in the corresponding classes of tests. The second statistic is shown to provide asymptotically best rate of search for the set A of significant variables when tÇÉ but requires about ts log t cycles of computing. This may appear in accessible for actual computations in some applications. The first statistic requires only t log t cycles of computing operations and provides the best order of magnitude of the characteristics studied for the second class of tests.
Suggested Citation
Malyutov, M. & Sadaka, H., 1998.
"Maximization of empirical Shannon information in testing significant variables of linear model,"
SFB 373 Discussion Papers
1998,2, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Handle:
RePEc:zbw:sfb373:19982
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:19982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.