IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199715.html
   My bibliography  Save this paper

Analyzing bivariate continuous data that have been grouped into categories defined by sample quantiles of the marginal distributions

Author

Listed:
  • Borkowf, Craig B.
  • Gail, Mitchell H.
  • Carroll, Raymond J.
  • Gill, Richard D.

Abstract

Epidemiologists sometimes study the association between two measures of exposure on the same subjects by grouping the data into categories that are defined by sample quantiles of the two marginal distributions. Although such grouped data are presented in a twoway contingency table, the cell counts in this table do not have a multinomial distribution. We use the term bivariate quantile distribution (BQD) to describe the joint distribution of counts in such a table. Blomqvist (1950) gave an exact BQD theory for the case of only 4 categories based on division at the sample medians. The asymptotic theory he presented was not valid, however, except in special cases. We present a valid asymptotic theory for arbitrary numbers of categories and apply this theory to construct confidence intervals for the kappa statistic. We show by simulations that the confidence interval procedures we propose have near nominal coverage for sample sizes exceeding 90, both for 2 x 2 and 3 x 3 tables. These simulations also illustrate that the asymptotic theory of Blomqvist (1950) and the methods given by Fleiss, Cohen and Everitt (1969) for multinomial sampling can yield subnominal coverage for BQD data, although in some cases the coverage for these procedures is near nominal levels.

Suggested Citation

  • Borkowf, Craig B. & Gail, Mitchell H. & Carroll, Raymond J. & Gill, Richard D., 1997. "Analyzing bivariate continuous data that have been grouped into categories defined by sample quantiles of the marginal distributions," SFB 373 Discussion Papers 1997,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199715
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/66266/1/728329557.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borkowf, Craig B., 2002. "Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman's rank correlation," Computational Statistics & Data Analysis, Elsevier, vol. 39(3), pages 271-286, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.