IDEAS home Printed from https://ideas.repec.org/p/zbw/rwirep/997.html
   My bibliography  Save this paper

Internal meta-analysis for Monte Carlo simulations

Author

Listed:
  • Andor, Mark Andreas
  • Bernstein, David H.
  • Parmeter, Christopher F.
  • Sommer, Stephan

Abstract

Monte Carlo (MC) simulations are one of the dominant approaches to compare statistical methods. To date, there is no standard procedure for MC simulations. Although internally valid, they exhibit a certain degree of arbitrariness through the various choices that researchers make. In this paper, we propose the use of an internal meta-analysis for MC simulations to allow a standardized analysis, synthesis and presentation of MC simulation results in a transparent manner. The use of an internal meta-analysis allows (i) a much more standardized procedure and (ii) comprehensive analysis of a large variety and number of simulations. To exemplify the procedure, we conduct an extensive set of simulations to compare the empirical performance of three different estimators of the generalized stochastic frontier panel data model. Besides contributing to the literature on efficiency analysis by improving the understanding of the merits of the three different estimators, we demonstrate the applicability and usefulness of internal meta-analysis for MC simulations in general.

Suggested Citation

  • Andor, Mark Andreas & Bernstein, David H. & Parmeter, Christopher F. & Sommer, Stephan, 2023. "Internal meta-analysis for Monte Carlo simulations," Ruhr Economic Papers 997, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  • Handle: RePEc:zbw:rwirep:997
    DOI: 10.4419/9697316
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/272267/1/1847476627.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4419/9697316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Perelman, Sergio & Santín, Daniel, 2009. "How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement," European Journal of Operational Research, Elsevier, vol. 199(1), pages 303-310, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    2. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    3. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    4. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    5. Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
    6. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    7. Kumbhakar, Subal C., 2012. "Specification and estimation of primal production models," European Journal of Operational Research, Elsevier, vol. 217(3), pages 509-518.
    8. Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2015. "A Monte Carlo study on multiple output stochastic frontiers: a comparison of two approaches," Journal of Productivity Analysis, Springer, vol. 44(3), pages 309-320, December.
    9. Brissimis, Sophocles N. & Zervopoulos, Panagiotis D., 2012. "Developing a step-by-step effectiveness assessment model for customer-oriented service organizations," European Journal of Operational Research, Elsevier, vol. 223(1), pages 226-233.
    10. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    11. García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
    12. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
    13. Zarrin, Mansour & Brunner, Jens O., 2023. "Analyzing the accuracy of variable returns to scale data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1286-1301.
    14. Wang, Derek D. & Ren, Yaoyao, 2024. "Accuracy of Deterministic Nonparametric Frontier Models with Undesirable Outputs," European Journal of Operational Research, Elsevier, vol. 315(2), pages 596-612.
    15. Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.
    16. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    17. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    18. Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
    19. Kohl, Sebastian & Brunner, Jens O., 2020. "Benchmarking the benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1042-1057.
    20. Lars-Erik Borge & Marianne Haraldsvik, 2009. "Efficiency potential and determinants of efficiency: an analysis of the care for the elderly sector in Norway," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 16(4), pages 468-486, August.

    More about this item

    Keywords

    Monte Carlo simulation; meta-analysis; stochastic frontier analysis; productionfunction; panel data;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwirep:997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.