Internal meta-analysis for Monte Carlo simulations
Author
Abstract
Suggested Citation
DOI: 10.4419/9697316
Download full text from publisher
References listed on IDEAS
- Perelman, Sergio & Santín, Daniel, 2009. "How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement," European Journal of Operational Research, Elsevier, vol. 199(1), pages 303-310, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
- Mark Andor & Frederik Hesse, "undated".
"The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA),"
Working Papers
201285, Institute of Spatial and Housing Economics, Munster Universitary.
- Andor, Mark & Hesse, Frederik, 2012. "The StoNED age: The departure into a new era of efficiency analysis? An MC study comparing StoNED and the "oldies" (SFA and DEA)," CAWM Discussion Papers 60, University of Münster, Münster Center for Economic Policy (MEP).
- Andor, Mark & Hesse, Frederik, 2013. "The StoNED age: The Departure Into a New Era of Efficiency Analysis? A MC Study Comparing StoNED and the "Oldies" (SFA and DEA)," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79849, Verein für Socialpolitik / German Economic Association.
- Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019.
"Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes,"
European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2018. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," Ruhr Economic Papers 770, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
- Mark Andor & Frederik Hesse, 2014.
"The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA),"
Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
- Andor, Mark & Hesse, Frederik, 2013. "The StoNED Age: The Departure Into a New Era of Efficiency Analysis? – A Monte Carlo Comparison of StoNED and the "Oldies" (SFA and DEA)," Ruhr Economic Papers 394, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Kumbhakar, Subal C., 2012. "Specification and estimation of primal production models," European Journal of Operational Research, Elsevier, vol. 217(3), pages 509-518.
- Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2015.
"A Monte Carlo study on multiple output stochastic frontiers: a comparison of two approaches,"
Journal of Productivity Analysis, Springer, vol. 44(3), pages 309-320, December.
- Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2013. "A Monte Carlo Study on Multiple Output Stochastic Frontiers: Comparison of Two Approaches," IFRO Working Paper 2013/7, University of Copenhagen, Department of Food and Resource Economics.
- Brissimis, Sophocles N. & Zervopoulos, Panagiotis D., 2012.
"Developing a step-by-step effectiveness assessment model for customer-oriented service organizations,"
European Journal of Operational Research, Elsevier, vol. 223(1), pages 226-233.
- Brissimis, Sophocles & Zervopoulos, Panagiotis, 2011. "Developing a step-by-step effectiveness assessment model for customer-oriented service organizations," MPRA Paper 30765, University Library of Munich, Germany.
- Krüger, Jens J., 2012.
"A Monte Carlo study of old and new frontier methods for efficiency measurement,"
European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
- Krüger, Jens, 2010. "A Monte Carlo study of old and new frontier methods for efficiency measurement," Darmstadt Discussion Papers in Economics 200, Darmstadt University of Technology, Department of Law and Economics.
- García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
- Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
- Zarrin, Mansour & Brunner, Jens O., 2023. "Analyzing the accuracy of variable returns to scale data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1286-1301.
- Wang, Derek D. & Ren, Yaoyao, 2024. "Accuracy of Deterministic Nonparametric Frontier Models with Undesirable Outputs," European Journal of Operational Research, Elsevier, vol. 315(2), pages 596-612.
- Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.
- Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019.
"Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes,"
European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
- Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2018. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," Ruhr Economic Papers 770, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Mark Andor & Christopher F. Parmeter & Stephan Sommer, 2018. "Combining Uncertainty with Uncertainty to Get Certainty? Efficiency Analysis for Regulation Purposes," Working Papers 2018-02, University of Miami, Department of Economics.
- Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
- Kohl, Sebastian & Brunner, Jens O., 2020. "Benchmarking the benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1042-1057.
- Lars-Erik Borge & Marianne Haraldsvik, 2009.
"Efficiency potential and determinants of efficiency: an analysis of the care for the elderly sector in Norway,"
International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 16(4), pages 468-486, August.
- Lars-Erik Borge & Marianne Haraldsvik, 2009. "Efficiency potential and determinants of efficiency: An analysis of the care of elderly sector in Norway," Working Paper Series 10109, Department of Economics, Norwegian University of Science and Technology.
More about this item
Keywords
Monte Carlo simulation; meta-analysis; stochastic frontier analysis; productionfunction; panel data;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-07-17 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwirep:997. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.